【spoj8222】Substrings 后缀自动机

本文详细介绍了字符串匹配中的SAM算法实现过程,通过构造SAM自动机来高效地处理子串出现频率的问题。文章提供了完整的代码示例,并解释了如何计算每个节点的right集合大小,从而得出子串的最大出现次数。

AC通道:http://www.spoj.com/problems/NSUBSTR/

【题解】

我们知道,在SAM上对于一个结点s,Max(s)的出现次数就是right(s)

那么问题就是我们如何求出每个点的right集的大小。

我们知道,一个点的right集为它的儿子的right集的并集,所以我们按照拓扑序遍历每个点,同时更新它父亲的答案。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
#define FILE "read"
#define MAXN 500010
#define up(i,j,n) for(int i=j;i<=n;++i)
#define dn(i,j,n) for(int i=j;i>=n;--i)
#define cmax(a,b) a=max(a,b)
#define cmin(a,b) a=min(a,b)
int n,cnt(1),now(1),f[MAXN],mx[MAXN],c[MAXN],id[MAXN],g[MAXN],ans[MAXN],son[MAXN][27];
char ch[MAXN];
void insert(int x){
	int p=now,np=++cnt;
	mx[np]=mx[now]+1;now=np;g[np]=1;
	while(!son[p][x]&&p) son[p][x]=np,p=f[p];
	if(!p) f[np]=1;
	else{
		int q=son[p][x];
		if(mx[q]==mx[p]+1) f[np]=q;
		else{
			int nq=++cnt;
			mx[nq]=mx[p]+1;
			memcpy(son[nq],son[q],sizeof(son[q]));
			f[nq]=f[q];  f[q]=f[np]=nq;
			while(son[p][x]==q&&p) son[p][x]=nq,p=f[p];
		}
	}
}
int main(){
	freopen(FILE".in","r",stdin);
	freopen(FILE".out","w",stdout);
	scanf("%s",ch+1); n=strlen(ch+1);
	up(i,1,n)    insert(ch[i]-'a');
	up(i,2,cnt)  c[mx[i]]++;
	up(i,1,n)    c[i]+=c[i-1];
	up(i,2,cnt)  id[c[mx[i]]--]=i;
	dn(i,cnt,2)  g[f[id[i]]]+=g[id[i]];
	up(i,2,cnt)  cmax(ans[mx[i]],g[i]);
	up(i,1,n)  printf("%d\n",ans[i]);
	return 0;
}


【源码免费下载链接】:https://renmaiwang.cn/s/6hcxp 在C语言中,链表是一种常见的数据结构,用于存储动态数据集合。在这个“基于C的简单链表合并2排序程序”中,我们需要处理两个已经排序的链表,a和b,每个链表的节点包含学号(假设为整型)和成绩(也假设为整型)。目标是将这两个链表合并成一个新的链表,并按照学号的升序排列。我们来了解一下链表的基本概念。链表不同于数组,它不连续存储数据,而是通过指针将各个节点连接起来。每个节点通常包含两部分:数据域(存储学号和成绩)和指针域(指向下一个节点)。要实现这个合并和排序的过程,我们可以遵循以下步骤:1. **定义链表节点结构体**: 创建一个结构体类型,如`Node`,包含学号(score_id)和成绩(grade)字段,以及一个指向下一个节点的指针(next)。```ctypedef struct Node { int score_id; int grade; struct Node* next;} Node;```2. **初始化链表**: 在程序开始时,创建a和b链表的头节点,并确保它们的初始状态为空。3. **读取链表数据**: 从输入文件(假设为11.8中的文件)中读取数据,根据学号和成绩创建新的节点,并将其添加到相应的链表a或b中。这一步可能需要使用`fscanf`函数从文件中读取数据,并使用`malloc`分配内存创建新节点。4. **合并链表**: 合并两个链表的关键在于找到合适的位置插入b链表的节点。从头节点开始遍历a链表,比较当前节点的学号与b链表头节点的学号。如果b链表的学号更小,就将b链表的头节点插入到a链表的当前节点后面,然后继续比较b链表的新头节点(原头节点的下一个节点)与a链表的当前节点。当b链表为空或所有节点都已插入a链表时,合并完成。5. **排序链表**: 由于我们合并的时候
【源码免费下载链接】:https://renmaiwang.cn/s/0gh4u :“bp神经网络实现的iris数据分类”在机器学习领域,BP(Backpropagation)神经网络是一种广泛应用的监督学习算法,它主要用于解决非线性分类和回归问题。本项目实现了利用BP神经网络对鸢尾花(Iris)数据集进行分类。鸢尾花数据集是UCI机器学习库中的经典数据集,包含了三种不同鸢尾花品种的多个特征,如花瓣长度、花瓣宽度、萼片长度和萼片宽度,总计150个样本。:“bp神经网络实现的iris数据分类,UCI上下载的iris数据,适当调整误差精度,分类正确率可达到99%”我们需要理解UCI机器学习库中的Iris数据集。这个数据集由生物学家Ronald Fisher在1936年收集,是用于多类分类的典型实例。它包含3种鸢尾花(Setosa, Versicolour, Virginica)的4个特征,每种花有50个样本。在使用BP神经网络进行分类时,我们通常会先对数据进行预处理,包括数据清洗、标准化或归一化,以确保输入层的数值在同一尺度上。BP神经网络的核心在于反向传播算法,它通过计算预测值与真实值之间的误差,并将误差从输出层向输入层逐层反向传播,调整权重以减小误差。在训练过程中,我们通常设置学习率、迭代次数以及停止训练的阈值,以达到最佳性能。在这个项目中,通过对误差精度的适当调整,使得网络能够在训练完成后对鸢尾花的分类准确率高达99%,这表明网络具有很好的泛化能力。【详细知识点】:1. **BP神经网络**:由输入层、隐藏层和输出层组成,通过梯度下降法和链式法则更新权重,以最小化损失函数。2. **鸢尾花数据集(Iris dataset)**:包含了150个样本,每个样本有4个特征和1个类别标签,常用于分类任务的基准测试。3. **特征工程**:预处理数据,可能包括缺失值处理、异常值检测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值