语义分割学习与实践的感想
讴歌自由之风
这个作者很懒,什么都没留下…
展开
-
在Pytorch实现语义分割的一些思考2
在Pytorch实现语义分割的一些思考2语义分割中的二分类与多分类二分类二分类下loss的选择二分类下的IoU计算多分类多分类下的loss选择多分类下的mIoU计算 语义分割中的二分类与多分类 在语义分割中,一般是有二分类与多分类的区分。接下来我就分开描述我是怎么对待二分类和多分类的。 以下的试验例子都是在LIP提供的数据包下做的。可能有片面性,因为我没有跑所有的数据。 所以,这个文章主要是讲我在做二分类和多分类遇到的一些问题和解决心得。 二分类 二分类基本就是把我们要的目标(target)和背景(back原创 2020-06-25 13:39:23 · 1150 阅读 · 0 评论 -
在Pytorch实现语义分割的一些思考1
在Pytorch实现语义分割的一些思考1Datasettransformer Dataset 首先,pytorch的dataset很自由,在有image和label(也是一张图片)的情况下,自主定义一个Mydataset是个很好的选择。 要注意, 1.image和相对应的label的图片预处理是一致的,即使用random crop这类的function,要保证都crop出同一块区域。 2. image和label必须一一对应,即在导入image和label时,假如图片i的label缺失,或label z没有原创 2020-06-24 19:46:29 · 777 阅读 · 2 评论