椭圆一般方程和参数方程之间关系

本文介绍了椭圆拟合的数学方法,包括通过主动变换方程逆时针旋转椭圆的表达式,以及使用线性代数中的对角化二次型方法寻找正交变换,使系数矩阵对角化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

椭圆拟合常用到的公式:

下面的是来自知乎答主赵亮的回答:

假设直椭圆的表达式为:\frac{x^2}{A^2}+\frac{y^2}{B^2}=1

设主动变换方程,即把直椭圆逆时针旋转\beta的表达式为:
\begin{bmatrix} x' \\ y' \end{bmatrix}= \begin{bmatrix} cos\beta & -sin\beta  \\ sin\beta  & cos\beta \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}
或者:\begin{bmatrix} x \\ y \end{bmatrix}= \begin{bmatrix} cos\beta & sin\beta  \\ -sin\beta  & cos\beta \end{bmatrix}\begin{bmatrix} x' \\ y' \end{bmatrix}
代入直椭圆表达式,得:
x'^2(\frac{cos^2\beta}{A^2}+\frac{sin^2\beta}{B^2})+y'^2(\frac{sin^2\beta}{A^2}+\frac{cos^2\beta}{B^2})+2(\frac{cos\beta sin\beta}{A^2}-\frac{sin\beta cos\beta}{B^2})x'y'=1
然后待定系数,解方程以下就可以了。
\frac{cos^2\beta}{A^2}+\frac{sin^2\beta}{B^2}=\frac{1}{a^2}\\ \frac{sin^2\beta}{A^2}+\frac{cos^2\beta}{B^2}=\frac{1}{b^2}\\ 2(\frac{cos\beta sin\beta}{A^2}-\frac{sin\beta cos\beta}{B^2})=n

下面李阳 的答案是线性代数中对角化二次型的方法,也不错:
即寻找正交变换,使系数矩阵
\begin{bmatrix} \frac{1}{a^2} & \frac{n}{2} \\ \frac{n}{2} & \frac{1}{b^2}\end{bmatrix}对角化的方法

转载于:https://my.oschina.net/u/3534184/blog/1480095

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值