由于近期在公司内部做了一次 Elasticsearch 的分享,所以本篇主要是做一个总结,希望通过这篇文章能让读者大致了解 Elasticsearch 是做什么的以及它的使用和基本原理。
一、初识elasticsearch
1、elasticsearch的作用
elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容
二、倒排索引
倒排索引的概念是基于MySQL这样的正向索引而言的。
1、正向索引
那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
- 1)用户搜索数据,条件是title符合
"%手机%"
- 2)逐行获取数据,比如id为1的数据
- 3)判断数据中的title是否符合用户搜索条件
- 4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
2、倒排索引
倒排索引中有两个非常重要的概念:
- 文档(
Document
):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息 - 词条(
Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
创建倒排索引是对正向索引的一种特殊处理,流程如下:
- 将每一个文档的数据利用算法分词,得到一个个词条
- 创建表,每行数据包括词条、词条所在文档id、位置等信息
- 因为词条唯一性,可以给词条创建索引,例如hash表结构索引
倒排索引的搜索流程如下(以搜索"华为手机"为例):
- 1)用户输入条件
"华为手机"
进行搜索。 - 2)对用户输入内容分词,得到词条:
华为
、手机
。 - 3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
- 4)拿着文档id到正向索引中查找具体文档。
虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。
3、总结:正向和倒排
那么为什么一个叫做正向索引,一个叫做倒排索引呢?
- 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
- 而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。
是不是恰好反过来了?
那么两者方式的优缺点是什么呢?
正向索引:
- 优点:
- 可以给多个字段创建索引
- 根据索引字段搜索、排序速度非常快
- 缺点:
- 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
倒排索引:
-
优点:
- 根据词条搜索、模糊搜索时,速度非常快
-
缺点:
- 只能给词条创建索引,而不是字段
- 无法根据字段做排序
三、ES的一些概念
elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。