机器学习
lxinbit
这个作者很懒,什么都没留下…
展开
-
Google新闻推荐系统
Personalized News Recommendation Based on Click BehaviorGoogle新闻推荐We combine the information filtering mechanism using learned user profiles with an existing collaborative filtering mechanis转载 2016-07-12 23:57:43 · 2335 阅读 · 0 评论 -
XGBoost-Python完全调参指南-参数解释篇
在analytics vidhya上看到一篇Python>,写的很好。因此打算翻译一下这篇文章,也让自己有更深的印象。具体内容主要翻译文章的关键意思。原文见:http://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/这篇文转载 2016-07-14 21:53:42 · 6158 阅读 · 1 评论 -
xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?
作者:于菲链接:https://www.zhihu.com/question/45487317/answer/99153174来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。提主刚接触机器学习,参加kaggle的时候,用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了。但是用DecisionTree/RandomForest的转载 2016-07-14 22:18:04 · 6657 阅读 · 0 评论 -
使用Python Pandas处理亿级数据
在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择。这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据:硬件环境CPU:3.5 GHz Intel Cor转载 2016-06-18 21:57:59 · 16240 阅读 · 1 评论 -
常见机器学习算法比较
摘要:机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。本文主要回顾下几个常用算法的适应场景及其优缺点!(提示:部分内容摘自网络)。机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常最转载 2016-07-17 15:14:36 · 2388 阅读 · 0 评论 -
常见面试之机器学习算法思想简单梳理
前言:找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大。纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国转载 2016-07-17 15:38:50 · 522 阅读 · 0 评论 -
比较好的机器学习博客
http://www.cnblogs.com/maybe2030/ 维基百科,https://en.wikipedia.org/wiki/AdaBoost原创 2016-07-17 20:35:48 · 457 阅读 · 0 评论