mr2 wordcount 源码解析

package wordcount;
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;


public class wordcount {//继承泛型类Mapper
    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{

        //定义hadoop数据类型IntWritable实例one,并且赋值为1
        private final static IntWritable one = new IntWritable(1);
        //定义hadoop数据类型Text实例word
        private Text word = new Text();


        //实现map函数   
        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

            //Java的字符串分解类,默认分隔符“空格”、“制表符(‘\t’)”、“换行符(‘\n’)”、“回车符(‘\r’)”
            StringTokenizer itr = new StringTokenizer(value.toString());

            //循环条件表示返回是否还有分隔符。
            while (itr.hasMoreTokens()) {
                /*
                nextToken():返回从当前位置到下一个分隔符的字符串
                word.set()Java数据类型与hadoop数据类型转换
                */
                word.set(itr.nextToken());
                //hadoop全局类context输出函数write;
                context.write(word, one);
            }
        }
    }


    //继承泛型类Reducer
    public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {

        //实例化IntWritable
        private IntWritable result = new IntWritable();

        //实现reduce
        public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
            int sum = 0;

            //循环values,并记录单词个数
            for (IntWritable val : values) {
                sum += val.get();
            }
            //Java数据类型sum,转换为hadoop数据类型result
            result.set(sum);
            //输出结果到hdfs
            context.write(key, result);
        }
    }

    public static void main(String[] args) throws Exception {

        //实例化Configuration
        Configuration conf = new Configuration();
        /*
        GenericOptionsParser是hadoop框架中解析命令行参数的基本类。
        getRemainingArgs();返回数组【一组路径】

        函数实现
        public String[] getRemainingArgs() {
            return (commandLine == null) ? new String[]{} : commandLine.getArgs();
        }
        */
        //总结上面:返回数组【一组路径】
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

        //如果只有一个路径,则输出需要有输入路径和输出路径
        if (otherArgs.length < 2) {
            System.err.println("Usage: wordcount <in> [<in>...] <out>");
            System.exit(2);
        }

        //实例化job
        Job job = Job.getInstance(conf, "word count");

        //为了能够找到wordcount这个类
        job.setJarByClass(wordcount.class);
        //指定map类型
        job.setMapperClass(TokenizerMapper.class);
        //指定CombinerClass类
        job.setCombinerClass(IntSumReducer.class);
        //指定reduce类
        job.setReducerClass(IntSumReducer.class);

        //reduce输出Key的类型,是Text
        job.setOutputKeyClass(Text.class);
        // reduce输出Value的类型
        job.setOutputValueClass(IntWritable.class);
        //添加输入路径
        for (int i = 0; i < otherArgs.length - 1; ++i) {
            FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
        }
        //添加输出路径
        FileOutputFormat.setOutputPath(job,new Path(otherArgs[otherArgs.length - 1]));
        //提交job
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值