三项大模型安全国家标准发布,为行业发展保驾护航

在人工智能技术迅猛发展的当下,大模型已成为推动各行业变革的核心力量。从智能客服为企业降本增效,到医疗影像识别辅助精准诊断,从智能设计激发创意灵感,到金融风险预测助力稳健投资,大模型的应用场景不断拓展,深刻改变着人们的生产生活方式。然而,随着大模型应用的日益广泛,其安全问题也逐渐凸显,成为制约行业健康发展的关键因素。​

4 月 30 日,全国网络安全标准​化技术委会(简称 “网安标委”)正式发布 3 项大模型安全国家标准,分别为《网络安全技术 生成式人工智能服务安全基本要求》(简称《基本要求》)、《网络安全技术 生成式人工智能预训练和优化训练数据安全规范》(简称《数据安全规范》)以及《网络安全技术 生成式人工智能数据标注安全规范》(简称《标注安全规范》)。这三项标准将于 2025 年 11 月 1 日正式实施,为大模型的安全发展提供了坚实的保障。​

大模型安全问题严峻,标准出台迫在眉睫​

大模型的安全隐患涉及多个层面。在数据层面,数据泄露问题屡见不鲜。大模型训练依赖海量数据,其中不乏大量的个人敏感信息、商业机密等。一旦这些数据在采集、存储、传输等环节出现安全漏洞,被不法分子窃取,将对个人隐私和企业权益造成严重损害。例如,曾有一家知名科技企业,因数据存储系统被黑客攻击,导致数百万用户的个人信息泄露,引发了用户的信任危机,企业也面临巨额赔偿和声誉损失。​

数据投毒也是一大威胁。攻击者通过向训练数据中注入恶意数据,干扰模型的训练过程,使模型在后续的应用中输出错误或有害的结果。在金融领域,如果恶意攻击者对用于风险评估的大模型进行数据投毒,可能导致模型对贷款申请人的信用评估出现偏差,从而使金融机构面临巨大的信贷风险。​

在模型层面,模型窃取风险不容忽视。一些不法分子通过技术手段窃取企业或机构训练好的大模型,用于非法目的,如开发仿冒产品、进行不正当竞争等。部分小型初创公司耗费大量资源和时间研发的具有特定领域优势的大模型,可能被竞争对手窃取,使其失去市场竞争力。模型后门同样危险,攻击者在模型训练过程中植入后门程序,在特定条件下可以控制模型的输出,干扰正常的业务运行。在智能交通系统中,如果控制交通流量预测的大模型存在后门,攻击者可能在关键时刻篡改模型输出,导致交通拥堵甚至瘫痪。​

在应用层面,生成内容的合规性问题突出。部分大模型在运行过程中,可能会生成包含虚假信息、仇恨言论、色情低俗、暴力恐怖等违法违规内容,对社会秩序和公序良俗造成冲击。一些文生图大模型在用户输入特定指令时,会生成血腥暴力、歧视性的图像,在网络上传播后造成恶劣影响。大模型还可能被用于发起网络攻击,如生成钓鱼邮件、诈骗信息等,骗取用户的个人信息和财产。​

面对如此严峻的安全形势,出台统一、权威的安全标准成为当务之急。这些标准将为大模型的研发、应用和管理提供明确的指导和规范,有助于防范各类安全风险,推动大模型技术健康、可持续发展。​

三项标准内容详解,全方位筑牢安全防线​

《基本要求》:明确服务安全核心要求​

《基本要求》规定了生成式人工智能服务在训练数据安全、模型安全、安全措施等方面的要求,并给出了安全评估参考方法。在训练数据安全方面,要求服务提供者确保数据来源合法合规,对数据进行严格的安全评估和预处理,去除敏感信息和噪声数据,防止数据泄露和投毒。在模型安全方面,需保障模型的完整性和可用性,防止模型被窃取、篡改或植入后门。例如,企业要建立完善的模型版本管理和备份机制,定期对模型进行安全检测和更新。​

在安全措施方面,涵盖了身份认证、访问控制、数据加密、审计监测等多个维度。要求服务提供者对用户进行严格的身份认证,根据用户的角色和权限分配相应的操作权限,防止未经授权的访问和操作。对传输和存储的数据进行加密处理,确保数据的保密性。建立健全审计监测机制,实时监控模型的运行状态和用户行为,及时发现和处理异常情况。《基本要求》适用于服务提供者开展生成式人工智能服务相关活动,也为相关主管部门以及第三方评估机构提供了参考依据,有助于规范行业服务行为,提升整体安全水平。​

《数据安全规范》:保障训练数据安全质量​

《数据安全规范》规定了生成式人工智能预训练和优化训练数据及其处理活动的安全要求,描述了相应的评价方法。在数据收集阶段,要求明确数据收集的目的、范围和方式,遵循最小必要原则,避免过度收集数据。收集个人数据时,需获得用户的明确同意,并采取加密等安全措施保护数据在传输过程中的安全。在数据存储环节,要采用安全可靠的存储技术和设备,对数据进行分类分级管理,设置不同的访问权限,防止数据被非法访问和泄露。​

在数据使用过程中,严格控制数据的访问和使用权限,对数据的使用情况进行详细记录和审计。对于共享和交易数据,要确保数据的合法性和合规性,签订相关的数据安全协议。该标准适用于生成式人工智能服务提供者开展预训练和优化训练数据处理活动以及安全自评估,也适用于第三方机构对预训练和优化训练数据进行安全性评估,为保障训练数据的安全和质量提供了具体的规范和指导。​

《标注安全规范》:规范数据标注关键环节​

《标注安全规范》规定了生成式人工智能训练的数据标注平台或工具安全要求、数据标注规则安全要求、数据标注人员要求、数据标注核验要求,描述了数据标注安全评价方法。在数据标注平台或工具安全方面,要求平台具备完善的安全防护机制,防止数据泄露、篡改和非法访问。对标注工具进行定期的安全检测和更新,确保其安全性和稳定性。在数据标注规则安全方面,制定科学合理的标注规则,明确标注的标准和流程,避免因标注规则不清晰导致标注结果出现偏差或错误。​

对数据标注人员也提出了严格要求,要进行背景审查和权限管理,确保标注人员具备专业知识和技能,遵守标注规则和职业道德。建立标注人员培训和考核机制,不断提升其业务水平和安全意识。在数据标注核验方面,设立严格的核验流程和标准,对标注结果进行多轮核验,确保标注数据的准确性和一致性。该标准适用于生成式人工智能数据标注组织方开展训练数据标注活动,也可为生成式人工智能数据需求方对于数据标注进行检查、验收或第三方机构对数据标注进行安全性评估提供参考,有力地规范了数据标注这一关键环节,提高了标注数据的质量和安全性。​

标准实施意义重大,推动行业迈向新台阶​

这三项大模型安全国家标准的实施,具有多方面的重要意义。从行业发展角度来看,有助于规范市场秩序,营造公平竞争的市场环境。在标准的约束下,企业和机构必须按照统一的安全要求进行大模型的研发、应用和管理,避免了因安全标准不统一而导致的市场混乱和不正当竞争。这将促使行业资源向安全合规、技术实力强的企业集中,推动行业整体技术水平的提升。​

对于企业而言,遵循标准可以有效降低安全风险,提升自身竞争力。通过实施标准中的安全措施,企业能够更好地保护自身的数据资产和知识产权,防止因安全事故导致的经济损失和声誉损害。符合标准的企业在市场中更容易获得用户和合作伙伴的信任,从而赢得更多的业务机会。在金融、医疗等对数据安全和可靠性要求极高的行业,企业只有严格遵守相关标准,才能满足客户和监管机构的要求,开展业务活动。​

从社会层面来看,标准的实施有助于保护个人隐私和社会公共利益。大模型广泛应用于各个领域,涉及大量个人信息和社会公共数据。通过规范大模型的安全管理,能够有效防止个人信息泄露和滥用,避免生成有害社会的内容,维护社会的稳定和和谐。在智能政务领域,大模型用于处理公民的政务信息,严格的安全标准可以确保公民信息的安全,提升政府服务的公信力。​

在国际竞争中,我国的大模型安全标准也将发挥重要作用。随着人工智能技术的全球化发展,安全标准已成为国际竞争的重要组成部分。我国制定并实施领先的大模型安全标准,有助于提升我国在人工智能领域的国际话语权和竞争力,推动我国人工智能技术和产业走向世界。​

三项大模型安全国家标准的发布是我国人工智能产业发展的重要里程碑。它们为大模型的安全发展提供了全面、系统的规范和指导,将有力地促进大模型技术的健康、可持续发展。在标准的引领下,我国的大模型产业有望在安全的轨道上实现更大的突破,为经济社会的发展注入强大的动力,在全球人工智能竞争中占据更加有利的地位。各相关企业和机构应积极响应标准要求,加强安全管理和技术创新,共同推动大模型产业迈向高质量发展的新阶段。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值