并查集及举例

一、 并查集: (union-find sets)

    一种简单的用途广泛的集合. 并查集是若干个不相交集合,能够实现较快的合并和判断元素所在集合的操作,应用很多,如其求无向图的连通分量个数等。最完美的应用当属:实现Kruskar算法求最小生成树。

 

并查集的三种操作

1 、Make_Set(x) 把每一个元素初始化为一个集合

初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身(也可以根据情况而变)。

2 、Find_Set(x) 查找一个元素所在的集合

查找一个元素所在的集合,其精髓是找到这个元素所在集合的祖先!这个才是并查集判断和合并的最终依据。
判断两个元素是否属于同一集合,只要看他们所在集合的祖先是否相同即可。
合并两个集合,也是使一个集合的祖先成为另一个集合的祖先,具体见示意图

3 、Union(x,y) 合并x,y所在的两个集合

合并两个不相交集合操作很简单:
利用Find_Set找到其中两个集合的祖先,将一个集合的祖先指向另一个集合的祖先。如图


并查集的优化

1 、Find_Set(x)时 路径压缩
寻找祖先时我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度,有没有办法减小这个复杂度呢?
答案是肯定的,这就是路径压缩,即当我们经过"递推"找到祖先节点后,"回溯"的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示;可见,路径压缩方便了以后的查找。

2 、Union(x,y)时 按秩合并
即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度会相对较小。

 

二、举例——《编程之美》P205 区间重合判断

#include <iostream>
using namespace std;

/*
	测试数据:
1 6
2 3
1 2
3 9
0 0

*/

//区间重合判断,并查集求解
//家丁输入为整数,范围是n<=1000
const int NUMRANGE=1001;

int rank[NUMRANGE];
int p[NUMRANGE];

void MakeSet(int x){
	p[x]=x;
	rank[x]=0;
}

int FindSet(int x){
	if(x!=p[x]){
		p[x]=FindSet(p[x]);//回溯时压缩路径(将路径上所有节点父亲都赋予最终祖先)
	}
	return p[x];
}

void Union(int x,int y){
	x=FindSet(x);
	y=FindSet(y);

	//此后,x,y是两个集合的最终祖先!

	if(x==y) return;

	if(rank[x]>rank[y]){
		p[y]=x;
	}else if(rank[x]<rank[y]){
		p[x]=y;
	}else{
		//rank[x]==rank[y]
		p[x]=y;//此时随便啦^^
		rank[y]++;
	}
}

int main(){
	/*
		1. 不连续的区间属于不同集合
		2. [0,2]区间在集合中有三个顶点:0,1,2
	*/

	int i;
	for(i=0;i<=1000;i++)
		MakeSet(i);

	int oriBg,oriEnd,tempBg,tempEnd;

	cin>>oriBg>>oriEnd;

	while(cin>>tempBg>>tempEnd){
		//0 0结束
		if(tempBg==0 && tempEnd==0)
			break;
		int j;
		for(j=tempBg;j<tempEnd;j++)
			Union(j,j+1);
	}

	//判断[oriBg,oriEnd]是否在目标区间内
	if(FindSet(oriBg)==FindSet(oriEnd))
		cout<<"在区间内"<<endl;
	else
		cout<<"不在!"<<endl;
}
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值