1. 为何状态压缩:
棋盘规模为n*m,且m≤10,如果用一个int表示一行上棋子的状态,足以表示m≤10所要求的范围。故想到用int s[num]。至于开多大的数组,可以自己用DFS搜索试试看;也可以遍历0~2^m-1,对每个数值的二进制表示进行检查;也可以用数学方法(?)
2. 如何构造状态:
当然,在此之前首先要想到用DP(?)。之后,才考虑去构造状态函数f(...)。
这里有一个链式的限制 :某行上的某个棋子的攻击范围是2。即,第r行的状态s[i],决定第r-1行只能取部分状态s[p];同时,第r行的状态s[i],第r-1行状态s[p],共同决定第r-2行只能取更少的状态s[q]。当然,最后对上面得到的候选s[i], s[p], s[q],还要用地形的限制去筛选一下即可。
简言之,第r行的威震第r-2行,因此在递推公式(左边=右边)中,必然同时出现r,和r-2两个行标;由于递推公式中行标是连续出现的,故在递推公式中必然同时出现r, r-1和r-2三个行标。由于在递推公式中左边包含一个f(...),右边包含另一个f(...),根据抽屉原理,r, r-1, r-2中至少有两个在同一个f(...)中,因此状态函数中必然至少包括相邻两行的行号作为两个维度。这就是为什么状态函数要涉及到两(相邻的)行,而不是一行。能想到的最简单形式如下:
dp[r][i][p]:第r行状态为s[i],第r-1行状态为s[p],此时从第0行~第r行棋子的最大数目为dp[r][i][p]
递推公式:
s[p]影响到s[q]的选取
----
| |
dp[r][i][p]=max{dp[r-1][p][q]}+sum[j], 其中sum[j]是状态s[j]中1的个数
| | |
---- |
s[i]影响到s[p]的选取 |
| |
----------------------------
代码:
#include <stdio.h> #include <string.h> #include <iostream> #define MAX(a,b) (a)>(b)?(a):(b) using namespace std; int dp[105][65][65]; //d[i][j][k]: “第i行状态是s[j],第i-1行状态是s[k]”的 int s[105]; //一行的状态选择s[0], s[1], ... , s[k-1] int n,m; //n行×m列 int k; //一行的所有状态数 int map[105]; //'H''P'地图map[0]~map[n-1],地图每一行map[line]: 1001 表示HPPH int sum[105]; /* 很久就看推荐题目有这个了,一直没做,因为看了好几次没看懂,都说dp,这几天看了状态压缩后明白了,其实就是用 二进制来表示各个位置的状态然后进行枚举,把状态放进数组里就行,在这里用dp[i][j][k]表示第i行,当前j状态, i-1行是k状态时候的最大炮数 dp[i][j][k]=MAX(dp[i][j][k],dp[i-1][k][p]+sum[j]) CAUTION: 1. 所有下标均从0开始 2. m<=10保证了可以用一个int存储一行的状态 */ //状态s[x]是否造成行冲突 bool ok(int x) { if(x&(x<<1))return false; if(x&(x<<2))return false; return true; } //状态s[x]下有多少个1 int getsum(int x) { int num=0; while(x>0) { if(x&1)num++; x>>=1; } return num; } void find() { memset(s,0,sizeof(s)); for(int i=0;i<(1<<m);i++) //i枚举所有m位的二进制数 { if(ok(i)) { s[k]=i; sum[k++]=getsum(i); } } } int main() { while(scanf("%d%d",&n,&m)!=EOF){ memset(dp,-1,sizeof(dp)); int i; for(i=0;i<n;i++){ for(int j=0;j<m;j++){ char tmp; cin>>tmp; if(tmp=='H')map[i]=map[i]|(1<<j);//把第i行原始状态取反后放入map[i] } } k=0; find(); //1. 初始化第0行状态(只考虑有效状态,无效状态为-1) for(i=0;i<k;i++) if(!(s[i]&map[0])) //s[i]为1的位如果对应平原(0),则&运算后为0 dp[0][i][0]=sum[i]; //2. 计算第1~n-1行状态(碰到无效状态,continue) for(int r=1;r<n;r++) { for(int i=0;i<k;i++)//枚举第r行的状态 s[i] { if(map[r]&s[i]) continue; //通过地形排除部分第r行的状态 for(int p=0;p<k;p++) //枚举第r-1行状态 s[p] { if(s[i] & s[p]) continue; //r与r-1没有想接触的 for(int q=0;q<k;q++) //枚举第r-2行状态s[q] { if(s[p] & s[q]) continue; //Sam:这行是我加的 if(s[i] & s[q]) continue; //r与r-2行没有接触的 if(dp[r-1][p][q]==-1) continue; //所有不可能的情形dp[i][j][k]都为-1(初始化的值) dp[r][i][p]=MAX(dp[r][i][p],dp[r-1][p][q]+sum[i]); } } } } int ans=0; for(i=0;i<k;i++) for(int j=0;j<k;j++) ans=MAX(ans,dp[n-1][i][j]); printf("%d\n",ans); } system("pause"); return 0; }