C++ n条直线,无三线共点,能有多少种不同的交点数(动态规划)

该博客探讨了在无三线共点的情况下,如何使用动态规划方法计算n条直线可能的不同交点数。通过分析直线之间的交互,归纳出公式n条直线的交点数最多为n(n-1)/2。并逐步解释了当n等于2、3、4时的特殊情况,最后展示了程序实现和测试结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述

     

二、思路:

    问题分析:(1)直线2与直线1,最多只有1个交点;

    (2)直线3,与直线1、2最多有2个交点;

      ……

    (3)直线n,与其他的n-1条直线最多有n-1个交点

      归纳:n条直线互不平行且无三线共点的交点数最多为:Max = 1 +2 +……+(n-1)=n(n-1)/2;

 

   n条直线有多少种不同的交点数(n只考虑大于1)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值