1.定义
多项式是一种只包含加法与乘法的简单函数, 最适于计算机计算来近似复杂的函数.
f(x)≈f(x0)+f′(x0)(x−x0)
就是一个例子.
为了能够任意逼近及给出误差, 引入了泰勒多项式:
Pn(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+...+fn(x0)n!(x−x0)n(1)
式1称为 n阶泰勒多项式.
f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+...+fn(x0)n!(x−x0)n+Rn(x)(2)
Rn(x)=fn+1(ϵ)(n+1)!(x−x0)n+1(3)
式2称为 n阶泰勒公式 .
式3称为 拉格朗日型余项, ϵ 介于x_0与x之间.
即
n阶泰勒公式=n阶泰勒多项式+拉格朗日型余项
取
x0=0
, 就得到了泰勒公式的特殊情况
f(x)=f(0)+f′(0)x+f′′(0)2!x2+...+fn(0)n!xn+Rn(x)(4)
式4称为 n阶麦克劳林公式.
2.常见函数的麦克劳林多项式
ex=1+x+x22!+...+xnn!
ln(1+x)=x−x22+x33...+(−1)n−1xnn