泰勒公式

1.定义

多项式是一种只包含加法与乘法的简单函数, 最适于计算机计算来近似复杂的函数.
f(x)f(x0)+f(x0)(xx0) 就是一个例子.

为了能够任意逼近及给出误差, 引入了泰勒多项式:

Pn(x)=f(x0)+f(x0)(xx0)+f′′(x0)2!(xx0)2+...+fn(x0)n!(xx0)n(1)

式1称为 n阶泰勒多项式.
f(x)=f(x0)+f(x0)(xx0)+f′′(x0)2!(xx0)2+...+fn(x0)n!(xx0)n+Rn(x)(2)

Rn(x)=fn+1(ϵ)(n+1)!(xx0)n+1(3)

式2称为 n阶泰勒公式 .
式3称为 拉格朗日型余项, ϵ 介于x_0与x之间.
n阶泰勒公式=n阶泰勒多项式+拉格朗日型余项

x0=0 , 就得到了泰勒公式的特殊情况

f(x)=f(0)+f(0)x+f′′(0)2!x2+...+fn(0)n!xn+Rn(x)(4)

式4称为 n阶麦克劳林公式.

2.常见函数的麦克劳林多项式

ex=1+x+x22!+...+xnn!

ln(1+x)=xx22+x33...+(1)n1xnn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值