- 博客(16)
- 收藏
- 关注
原创 《利用python进行数据分析》笔记三(pandas)
from pandas import Series,DataFrameimport pandas as pdPandas中的数据结构1 Series 一种类似于一维数组的对象,由一组数据(numpy中的各种数据类型)和一组对应的数据标签(索引)组成data1=series([1,2,3,5])data2=series([1,3,5,7],index=['a','b','c...
2018-03-13 15:22:44 290
原创 《利用python进行数据分析》笔记二
线性代数np.dot(matrix1,matrix2):矩阵点乘numpy.linalg 包含矩阵分解,求逆、行列式等矩阵运算的库from numpy.linalg import inv,qr numpy.random 中的函数补充了python内置的random,可以高效产生各种分布下的随机数np.random.randn(size) 例:模拟随机游走(用内置...
2018-03-11 15:02:19 358
原创 数据分析学习一——数据预处理
数据缺失值处理1 明确缺失原因 2 如果有缺失项的数据在训练数据和预测数据中的比例都不大的话,可以直接删除整条数据 3 用众数、平均数等代表性数据或自定义数据来代替 4 用完整数据基于其他未缺失指标建立预测模型预测缺失值数据异常值处理异常样本:极其小的小概率事件离散变量:稀有类别值连续变量:取值过大或过小(可以以3σ为阈值,Tukey’s test——箱线图) ...
2018-03-06 20:26:25 834
原创 《统计学习方法》笔记一
一 统计学习方法概论1.1统计学习学习:一个系统能够通过执行某个过程而得到性能的提升,那么这个过程就是学习。对象:数据 处理过程:数据→特征→模型→知识→预测 学习方法分类:监督、半监督、非监督、强化学习基本假设:数据独立同分布要学习的模型属于某个函数的集合1.2监督学习监督学习:学习一个模型,使得对任意给定的输入,对其输出进行好的预测输入空间可以...
2018-03-05 09:37:42 214
原创 《利用python进行数据分析》笔记一
一、 Numpyimport numpy as np test_data=np.array(data,dtype=np.int32) np.asarray(data) 将数据转化为ndarray np.arange() 创建序号 np.ones()创建元素均为1的ndarray np.ones_like(data)创建与data同维度的元素均为1的ndarr...
2018-03-04 20:59:05 326
原创 计算机科学与Python编程导论_MIT 学习笔记(七)
第七讲 调试(debugging)黑盒测试(black-box testing):通过特定分类探索路径 白盒测试(glass-box testing):通过代码本身探索路径debugging的本质是找到错误代码的位置:搜索问题→二分法python等编程软件可以自动找出代码的语法甚至一些语义错误测试套件(test suite)把整个输入集划分成许多个子集, 每个子集选择一个元
2018-01-16 14:04:12 731
原创 计算机科学与Python编程导论_MIT 学习笔记(六)
目前学到的编程算法(思想): 1 穷举 2 猜测和验证 3 二分法 4 分而治之元组(tuple): 当声明一个只有一个元素的元组时,要在元素后面加‘,’例:找公约数def findDivisors(n1,n2): """assumes n1 and n2 positive ints returns tuple containing
2017-12-17 21:39:29 442
原创 计算机科学与Python编程导论_MIT 学习笔记(五)
迭代程序: 1 状态变量: 迭代次数ii 目前的计算结果resultresult (状态变量都会有初始值) 2 状态变量的更新: i=i−1i=i-1,直到i=0i=0时停止 result=f(result)result=f(result)例:用加法迭代计算乘法def multi(x,p): ans=0 while p>0: ans+=x
2017-12-16 11:20:04 563
原创 计算机科学与Python编程导论_MIT 学习笔记(四)
函数语法:返回none 或者指定值 函数内部为一个黑盒 封装(encapsulating)一个环境局部,不影响全局环境,便于调试全局变量和局部变量例:幂函数def iterativePower(x,p): result=1 for turn in range(p): print('iteration: '+str(turn)+' current result: '
2017-12-14 20:12:30 460
原创 计算机科学与Python编程导论_MIT 学习笔记(三)
while 循环的工作过程 1 bool检验 2 如果bool检验为真,执行循环体 3 返回bool检验 4 直到bool检验为假,停止循环,执行循环体外的程序while 循环的必要组件 1 在循环之前设置迭代变量 2 在bool检验中检验迭代变量 3 在循环体中改变迭代变量的值编程思路:以求立方根为例 设置ans作为猜测,从0开始猜,直到ans**3>给定值,然后结束循环,判断最后
2017-12-12 10:53:56 885
原创 计算机科学与Python编程导论_MIT 学习笔记(二)
编程语言目标: 找到一种计算机能执行的、描述机械步骤的方式 程序语言定义这种方式的语法和语义编程语言的选择: 1 低水平编程语言 源代码使用简单的计算和逻辑运算,checker检查语法和语义,没有错误后交给interpreter执行,最后得到output。2 高水平编程语言 使用更加抽象的术语,封装了更复杂的运算 编译型(compiled)语言,在checker之后,将复杂的运算编译成最
2017-12-09 19:04:17 660
原创 计算机科学与Python编程导论_MIT 学习笔记(一)
课程目标 学会用计算机的算法和机械表达来完成挑战 学会计算机思维: 找到方法论 分解为机械式的步骤 转化为计算机可执行的步骤计算机的能力 计算 存储计算机可以完成的计算: 内置函数 我们自己创造的函数即使计算机能够高速运行、大量储存,仍然需要好的算法来优化计算。计算机的局限: 在非常局部、微观的问题上(如:预测接下来1小时的天气),需要非常大的运算量来建模,这反过来也能帮助实现加
2017-12-08 22:55:46 2235
原创 笔记杂记
· Python交互模式主要是为了调试Python代码用的· 用Python开发程序,完全可以一边在文本编辑器里写代码,一边开一个交互式命令窗口,在写代码的过程中,把部分代码粘到命令行去验证,事半功倍!前提是得有个27’的超大显示器!
2017-12-07 20:11:03 164
原创 深度学习与神经网络_吴恩达 学习笔记(二)
第三章 浅层次神经网络1 结构输入层 隐藏层(隐藏意味着在训练中,节点的真实值是不知道的) 输出层 输入层为第0层,所以有一个隐藏层的神经网络称为双层神经网络2 计算输出(forward propagation正向传播过程) 符号说明 a[0]=Xa^{[0]}=X:特征值,放入输入层 a[1]a^{[1]}:隐藏层参数,包含参数w[1]w^{[1]}、b[1]b^{[1]
2017-12-06 16:23:54 382
原创 程序设计与算法(二)算法基础_北京大学 学习笔记(一)
第一周 枚举 所有题目用python实现例题1 完美立方N=int(input ('N='))for a in range(3,N+1): for b in range(2,a): for c in range(b,a): for d in range(c,a): if a**3==b**3+c**3+d**3
2017-12-05 11:05:13 2006
原创 神经网络与深度学习_吴恩达 学习笔记(一)
第二章 神经网络基础 符号说明 样本:(x,y),x∈Rnx,y∈{0,1} 样本:(x,y),x\in \mathbb R^{n_x},y\in \{0,1\} m个训练样本:{(x(1),y(1)),(x(2),y(2)),…,(x(m),y(m))} m个训练样本:\{ (x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots,(x^{(m)},
2017-12-03 10:35:10 403
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人