742. [网络流24题] 深海机器人 费用流/连两条边

深海机器人问题
«问题描述:
深海资源考察探险队的潜艇将到达深海的海底进行科学考察。潜艇内有多个深海机器
人。潜艇到达深海海底后,深海机器人将离开潜艇向预定目标移动。深海机器人在移动中还
必须沿途采集海底生物标本。沿途生物标本由最先遇到它的深海机器人完成采集。每条预定
路径上的生物标本的价值是已知的,而且生物标本只能被采集一次。本题限定深海机器人只
能从其出发位置沿着向北或向东的方向移动,而且多个深海机器人可以在同一时间占据同一
位置。
«编程任务:
用一个P´Q 网格表示深海机器人的可移动位置。西南角的坐标为(0,0),东北角的坐
标为 (Q,P)。

给定每个深海机器人的出发位置和目标位置,以及每条网格边上生物标本的价值。计算
深海机器人的最优移动方案,使深海机器人到达目的地后,采集到的生物标本的总价值最高。
«数据输入:
由文件shinkai.in提供输入数据。文件的第1 行为深海机器人的出发位置数a,和目的地
数b,第2 行为P和Q 的值。接下来的P+1 行,每行有Q 个正整数,表示向东移动路径上
生物标本的价值,行数据依从南到北方向排列。再接下来的Q+1 行,每行有P 个正整数,
表示向北移动路径上生物标本的价值,行数据依从西到东方向排列。接下来的a行,每行有
3 个正整数k,x,y,表示有k个深海机器人从(x,y)位置坐标出发。再接下来的b行,每行有3
个正整数r,x,y,表示有r个深海机器人可选择(x,y)位置坐标作为目的地。
«结果输出:
程序运行结束时,将采集到的生物标本的最高总价值输出到文件shinkai.out中。

shinkai.in
1 1
2 2
1 2
3 4
5 6
7 2
8 10
9 3
2 0 0
2 2 2
shinkai.out
42
1<=P,Q<=15 1<=a,b<=10


连两条边,一个是容量为1的边,费用给出,另一条是容量为INF的边,容量为0

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 10000;
const int MAXM = 100000;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int to,next,cap,flow,cost;
} edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;//节点总个数,节点编号从0~N-1
void init(int n)
{
    N = n;
    tol = 0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int cap,int cost)
{
    edge[tol].to = v;
    edge[tol].cap = cap;
    edge[tol].cost = cost;
    edge[tol].flow = 0;
    edge[tol].next = head[u];
    head[u] = tol++;
    edge[tol].to = u;
    edge[tol].cap = 0;
    edge[tol].cost = -cost;
    edge[tol].flow = 0;
    edge[tol].next = head[v];
    head[v] = tol++;
}
bool spfa(int s,int t)
{
    queue<int>q;
    for(int i = 0; i < N; i++)
    {
        dis[i] = INF;
        vis[i] = false;
        pre[i] = -1;
    }
    dis[s] = 0;
    vis[s] = true;
    q.push(s);
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        vis[u] = false;
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].to;
            if(edge[i].cap > edge[i].flow &&
                    dis[v] > dis[u] + edge[i].cost )
            {
                dis[v] = dis[u] + edge[i].cost;
                pre[v] = i;
                if(!vis[v])
                {
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if(pre[t] == -1)return false;
    else return true;
}
//返回的是最大流,cost存的是最小费用
int minCostMaxflow(int s,int t,int &cost)
{
    int flow = 0;
    cost = 0;
    while(spfa(s,t))
    {
        int Min = INF;
        for(int i = pre[t]; i != -1; i = pre[edge[i^1].to])
        {
            if(Min > edge[i].cap - edge[i].flow)
                Min = edge[i].cap - edge[i].flow;
        }
        for(int i = pre[t]; i != -1; i = pre[edge[i^1].to])
        {
            edge[i].flow += Min;
            edge[i^1].flow -= Min;
            cost += edge[i].cost * Min;
        }
        flow += Min;
    }
    return flow;
}







int T;
int a,b,p,q,t;
int lenp ;
int lenq ;
//得到坐标
int getnum(int x,int y)
{
    return x*(lenq)+y + 1;
}

int main()
{
    freopen("shinkai.in","r",stdin);
    freopen("shinkai.out","w",stdout);
//      freopen("data.txt","r",stdin);


    int ss,tt;
    scanf("%d%d",&a,&b);
    scanf("%d%d",&p,&q);
    ss = 0;
    lenq = q+1;


    tt = getnum(q,p)+1;

    init(500);
    for(int i=0;i<=p;i++)
    {
        for(int j=1;j<=q;j++)
        {
            scanf("%d",&t);
            int now = getnum(j-1,i);
            int nex = getnum(j,i);
            addedge(now,nex,1,-t);
            addedge(now,nex,INF,0);
        }
    }


    for(int i=0;i<=q;i++)
    {
        for(int j=1;j<=p;j++)
        {
            scanf("%d",&t);
            int now = getnum(i,j-1);
            int nex = getnum(i,j);
            addedge(now,nex,1,-t);
            addedge(now,nex,INF,0);
        }
    }


    int k,x,y;
    for(int i=0;i<a;i++)
    {
        scanf("%d%d%d",&k,&x,&y);
        int nex = getnum(y,x);
        addedge(0,nex,k,0);
    }


    for(int i=0;i<b;i++)
    {
        scanf("%d%d%d",&k,&x,&y);
        int nex = getnum(y,x);
        addedge(nex,tt,k,0);
    }

    int cost =0 ;
    minCostMaxflow(ss,tt,cost);
    printf("%d\n",-cost);

    return 0;
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值