机器学习之线性回归和梯度下降算法

本文介绍了机器学习中的线性回归和梯度下降算法。线性回归用于解决回归问题,通过线性方程描述输入与输出的关系。损失函数用来衡量模型的误差,目标是找到使损失函数最小的模型参数。梯度下降是优化损失函数的一种方法,通过迭代更新参数以达到极小值。此外,文章还讨论了过拟合现象和正则化的概念。
摘要由CSDN通过智能技术生成

一般来说,我们根据机器学习的任务把不同的业务模型划分为四种基本问题。
回归问题,分类问题,聚类问题和降维问题。
回归问题 \ 都是在有监督条件下,根据已知的输入和输出,构建
分类问题 / 预测模型,对未知输出的输入给出大概率的输出
我们举个例子:
输入 输出
1 2
2 4
3 6
4 8
------- y = x * 2
5 ? -> 10
输出是一个连续值,回归问题。
我们再看一个例子:
输入 输出
1 1
2 0
3 1
4 0
5 1
6 0
------- 奇数->1,偶数->0
7 ? -> 1
输出是一个离散值,分类问题。
聚类问题:在无监督模式下,根据输入的特征划分族群。
降维问题:在无监督模式下,对输入特征进行取舍以降低维度。
输入 输出
x1 y1
x2 y2

xm ym
y = w0+w1x - 通过线性方程描述输出和输入之间的关系,已解决回归问题,这就是线性回归。

预测函数:y = w0+w1x
预测输出为:
x1 -> y1’=w0+w1x1
x2 -> y2’=w0+w1x2

xm->ym’=w0+w1xm
y1 y2 … ym : 实际输出
(y1 - y1’) ^ 2 : 单样本误差

总样本误差:
( y 1 − y 1 ′ ) 2 + ( y 2 − y 2 ′ ) 2 + . . . + ( y m − y m ′ ) 2 2 = E \frac{(y1-y1') ^ 2 + ( y2-y2') ^ 2 + ... + (ym-ym') ^ 2}{2} = E 2(y1y1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值