混沌数学之Lorenz(洛伦茨)吸引子

洛伦茨吸引子是洛伦茨振子(Lorenz oscillator)的长期行为对应的分形结构,以爱德华·诺顿·洛伦茨的姓氏命名。
洛伦茨振子是能产生混沌流的三维动力系统,是一种吸引子,以其双纽线形状而著称。
映射展示出动力系统(三维系统的三个变量)的状态是如何以一种复杂且不重复的模式,随时间的推移而演变的。

当ρ(m_ParamB)值较小时,系统是稳定的,并能演变为两个定点吸引子中的一个;
当ρ(m_ParamB)大于24.28时,定点变成了排斥子,会以非常复杂的方式排斥轨迹,演变时自身从不交叉。

相关软件:混沌数学及其软件模拟

相关代码:

/*
    http://zh.wikipedia.org/wiki/%E6%B4%9B%E4%BC%A6%E8%8C%A8%E5%90%B8%E5%BC%95%E5%AD%90
*/

class LorenzOscillator : public DifferentialEquation
{
public:
    LorenzOscillator()
    {
        m_StartX = -10.0f;
        m_StartY = 10.0f;
        m_StartZ = 25.0f;

        m_ParamA = 10.0f;
        m_ParamB = 28.0f;
        m_ParamC = 8.0f/3.0f;

        m_StepT = 0.001f;
    }

    void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ)
    {
        dX = m_ParamA*(y - x);
        dY = m_ParamB*x - y - x*z;
        dZ = x*y - m_ParamC*z;
    }

    bool IsValidParamA() const {return true;}
    bool IsValidParamB() const {return true;}
    bool IsValidParamC() const {return true;}
};

相关截图:

转载于:https://my.oschina.net/abcijkxyz/blog/723691

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值