【codevs 1001】舒适的路线

嘛嘛……
这题能做?

我滴妈……
按边排一遍序
然后恩恩
选择一条边当做最短的,然后往上找,之后找到的都会是比这条边大的,然后用并查集维护连通性,如果加入一条边之后可以从s走到t,就记录下答案,存下来
然后恩恩约分
233333

我不会约分……

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = 500 + 5;
const int MAXM = 5000 + 5;
struct edge
{
    int f,t,v;
    bool operator < (const edge &b)const
    {
        return v < b.v;
    }
}l[MAXM];
int n,m;
int fa[MAXN];
int rank[MAXN];
void init()
{
    for(int i = 1;i <= n;i ++)
        fa[i] = i;
    memset(rank,0,sizeof(rank));
    return;
}
int find(int x)
{
    return fa[x] == x ? x : fa[x] = find(fa[x]);
}
bool same(int x,int y)
{
    return find(x) == find(y);
}
void merge(int x,int y)
{
    x = find(x);
    y = find(y);
    if(rank[x] < rank[y])
        swap(x,y);
    fa[x] = y;
    if(rank[x] == rank[y])
        rank[y] ++;
    return;
}
struct fs
{
    int fz,fm;
    bool operator < (const fs &b)const
    {
        return fz * b.fm < b.fz * fm;
    }
}zt[MAXM * MAXN];
int tot;
void solve(int s,int t)
{
    tot = 0;
    sort(l + 1,l + m + 1);
    for(int i = 1;i <= m;i ++)
    {
        init();
        zt[tot].fm = l[i].v;
        for(int j = i;j <= m;j ++)
        {
            merge(l[j].f,l[j].t);
            zt[tot].fz = l[j].v;
            if(same(s,t))
                break;
        }
        if(same(s,t))
            tot ++;
    }
    return;
}
int gcd(int a,int b)
{
    if(b == 0)
        return a;
    return gcd(b,a%b);
}
int s,t;
int main()
{
    scanf("%d %d",&n,&m);
    for(int i = 1;i <= m;i ++)
        scanf("%d %d %d",&l[i].f,&l[i].t,&l[i].v);
    scanf("%d %d",&s,&t);
    solve(s,t);
    sort(zt,zt + tot);
    if(!tot)
    {
        puts("IMPOSSIBLE");
        return 0;
    }
    if(zt[0].fz % zt[0].fm == 0)
    {
        printf("%d\n",zt[0].fz / zt[0].fm);
        return 0;
    }
    int k;
    while((k = gcd(zt[0].fm,zt[0].fz)) - 1)
    {
        zt[0].fm /= k;
        zt[0].fz /= k;
    }
    printf("%d/%d\n",zt[0].fz,zt[0].fm);
    return 0;
}

转载于:https://my.oschina.net/u/2992707/blog/778001

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值