图像分割
文章平均质量分 55
诸葛非常的亮
一切有为法,如梦幻泡影,如露亦如电,应作如是观。
展开
-
MAC下deeplab_V3+将转换好的网络(.mlmodel)加载到IOS中进行测试
上一章介绍了.pb转换为.mlmodel,生成了IOS需要的文件“MobileNetV2.mlmodel”,现在我们需要使用它并来预测我们的图像。1. 加载“MobileNetV2.mlmodel”将“MobileNetV2.mlmodel”拷贝到IOS工程中,然后打开Xcode,选择File/Add file to xxx,这样就加载进来了,然后再xcode查看一下,信息如下:可以看到,显示的信息跟我们在python里面的输入是一样的。2. 用代码来预测let model3原创 2020-09-25 14:16:49 · 425 阅读 · 0 评论 -
MAC下deeplab_V3+转换训练好的网络(.pb)为IOS支持的格式(.mlmodel)
1. 在deeplab上一级目录运行命令来安装coremltoolspip install coremltools==4.0b3 -i https://pypi.tuna.tsinghua.edu.cn/simple2.原创 2020-09-23 11:02:30 · 424 阅读 · 1 评论 -
MAC下deeplab_V3+修改“local_test_mobilenetv2.sh”来测试自己的数据
上一篇博客“MAC下deeplab_V3+测试自带例程“local_test_mobilenetv2.sh””已经测试了自带例程,数据还算可以。这一节用这个shell来训练下自己的数据集。 首先复制datasets下的文件夹“pascal_voc_seg”到当前目录,改名为“bladder_voc_seg”,然后将自己的tfrecord数据复制到对应位置,图片数据也需要进行修改。 其中“train_on_trainval_set_mobilenetv2”下的文件夹都可以删除,shell会重新生原创 2020-09-12 09:59:09 · 202 阅读 · 0 评论 -
MAC下deeplab_V3+测试自带例程“local_test_mobilenetv2.sh”
deeplab_V3自带测试shell(如下图),现在我们测试下这个网络。原创 2020-09-08 11:24:55 · 206 阅读 · 0 评论