求子数组的最大和

 题目:输入一个整形数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。要求时间复杂度为O(n)。 例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18。 
       如果不考虑时间复杂度,我们可以枚举出所有子数组并求出他们的和。不过非常遗憾的是,由于长度为n的数组有O(n^2)个子数组;而且求一个长度为n的数组的和的时间复杂度为O(n)。因此这种思路的时间是O(n^3)。 

       本题解决思路:当我们加上一个正数时,和会增加;当我们加上一个负数时,和会减少。如果当前得到的和是个负数,那么这个和在接下来的累加中应该抛弃并重新清零,不然的话这个负数将会减少接下来的和,程序代码如下:

#include <iostream>
#include <vector>
using namespace std;
int main (void){
	//定义输入数组,存储输入的数组
	vector <int> data;
	//定义输出结果,存储最大和子数组
	vector <int> result;
	//定义输入变量
	int input;
	//定义和值
	int sum=0;
	//定义遍历过程中的最大和值
	int maxsum=0;
	//定义最大和值对应的id
	int finial_id=0;
	cout<<"please enter the integer:"<<endl;
	//逐位读取输入的数字,最后需要Ctrl+Z结束
	while(cin>>input)
	{
		//将输入的数字,逐个压入到堆
		data.push_back(input);
	}
	//计算最大和值
	for(int i=0;i<data.size();i++)
	{
		//和值累加
		sum=data[i]+sum;
		//记录最大和值并保存最大和值对应的最后一个数据的id
		if(sum>maxsum)
		{
			maxsum=sum;
			finial_id=i;
		}
		//若此时和值大于0,将结果压入到结果堆中
		if(sum>=0)
			result.push_back(data[i]);
		//和值小于0的时候,清除结果堆中的数据
		else
		{
			result.clear();
			sum=0;
		}
	}
	//若最后和值和最大值一致,则此时结果堆中的数组就是对应的子数组
	if(sum==maxsum)
	{
		cout<<"maxsum"<<maxsum<<endl;
		for(int i=0;i<result.size();i++)
			cout<<result[i]<<endl;
	}
	//若最后和值和最大值不一致,则需要找到最大值对应的子数组
	else
	{
		cout<<"maxsum"<<maxsum<<endl;
		int i=0;
		//清空result数组
		result.clear();
		//以最大和值最后一个数据对应的id为标杆,将最大和值子数组压入到结果数组
		while(maxsum>=0)
		{
			result.push_back(data[finial_id-i]);
			maxsum=maxsum-data[finial_id-i];
			if(finial_id-i==0)
				break;
			i++;
		}
		//按顺序输出结果
		for(int i=0;i<result.size();i++)
			cout<<result[result.size()-i-1]<<endl;
	}
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值