- 博客(17)
- 资源 (1)
- 收藏
- 关注
转载 json.loads和Json.load()的区别
在python中的json模块,有一对方法load()和loads(),其中load()方法是从json文件读取json,而loads()方法是直接读取json,两者都是将字符串json转换字典对象。下面利用几个实例说明,
2021-04-02 10:31:49 3139
原创 python矩阵运算大全(linalg模块)
1 python矩阵运算所需模块import numpy as npimport matplotlib.pyplot as pltimport scipy.linalg as lg #scipy矩阵运算模块2 定义矩阵和进行相关的矩阵运算print(lg.inv(a)) #求取矩阵的逆矩阵print(lg.det(a)) #求取矩阵的行列式b=np.array([6,14]) #定义线性方程组的结果向量print(lg.solve(a,b)) #求解线性方程组的解print(lg.eig(
2021-03-29 20:26:21 1473
原创 Python3 将列表中的指定位置的两个元素对调
Python 将列表中的指定位置的两个元素对调第一种方法第二种方法第三种方法定义一个列表,并将列表中的指定位置的两个元素对调。例如,对调第一个和第三个元素:第一种方法第二种方法第三种方法...
2021-03-25 20:55:43 531
原创 Python3中的self的作用
self的含义和用法Self的作用self的用法测试程序输出结果Self的作用所谓的self,可以理解为自己可以把self当做C++中类里面的this指针一样理解,就是对象自身的意思某个对象调用其方法时,python解释器会把这个对象作为第一个参数传递给self,所以开发者只需要传递后面的参数即可self的用法测试程序输出结果某个对象调用其方法时,python解释器会把这个对象作为第一个参数传递给self,所以开发者只需要传递后面的参数即可...
2021-03-24 22:02:17 292
转载 python pandas读取数据报错:Traceback (most recent call last):anaconda3/lib/python3.7/site-packages/pandas/i
具体报错信息:Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/dengfei/anaconda3/lib/python3.7/site-packages/pandas/io/parsers.py", line 676, in parser_f return _read(filepath_or_buffer, kwds) File "/home/d
2021-03-09 21:46:23 4104
转载 matplotlib报错AttributeError: module ‘sip‘ has no attribute ‘setapi‘的解决办法
matplotlib报错AttributeError: module ‘sip‘ has no attribute ‘setapi‘的解决办法pip install matplotlib后报错:AttributeError: module 'sip' has no attribute 'setapi'的解决办法pip install matplotlib后报错:AttributeError: module ‘sip’ has no attribute 'setapi’的解决办法新建虚拟环境,使用 pip
2021-03-09 14:45:51 1687 1
原创 word里如何设置目录页码
word里如何设置目录页码一.分页1. 把鼠标光标放在需要区分不同页码的下一部分的第一个字之前。如区分目录与正文,怎把光标放在正文的第一个字之前。上一页是目录页,下一页的第一个字是“一”,光标则在“一”之前。2. 然后,“页面布局”→“分隔符”→“下一页”。完成上述操作后,目录页与正文页设置页码时就可以互不干扰了。3. 接着,若文档有封面,封面与目录之间也进行相同的操作。二.插入页脚1. 先要设置页码的格式。“插入”→“页码”→“设置页码”。出现一下界面。其中的“编号格式...
2020-12-03 21:59:51 6163
原创 Pytorch中NLLLoss和CrossEntropyLoss功能
Pytorch中NLLLoss和CrossEntropyLoss功能NLLLoss在图片单标签分类时,输入m张图片,输出一个m*N的Tensor,其中N是分类个数。比如输入3张图片,分三类,最后的输出是一个3*3的Tensor,举个例子:第123行分别是第123张图片的结果,假设第123列分别是猫、狗和猪的分类得分。可以看出模型认为第123张都更可能是猫。然后对每一行使用Softmax,这样可以得到每张图片的概率分布。这里dim的意思是计算Softmax的维度,这里设置dim=1,
2020-12-03 21:53:57 354
原创 如何用word2vec 训练词嵌入模型
## 如何用word2vec 训练词嵌入模型**一、应用场景**假设你有一个商品的数据库,比如:![](https://img-blog.csdnimg.cn/2020112714190259.png)现在通过用户的输入来检索商品的价格。**方法一:直接匹配法**最简单的方法就是通过字符串进行匹配,比如,用户输入“椅子”,就用“椅子”作为关键字进行搜索,很容易找到椅子的价格就是200元/个。**方法二:语义相似法** 但有时用户输入的是“凳子”,如果按照字符串匹配的方法,只能返..
2020-12-03 21:49:47 890
转载 解决Navicat无法连接到MySQL的问题
解决Navicat无法连接到MySQL的问题最近遇到了一件非常棘手的问题,用Navicat远程连接数据库居然连接不到,真是头都大了。 网上查阅了一下原因,原来是没有开通远程权限,好吧,下面我就来回忆一下自己怎么处理这问题的!大家都知道,用Navicat连接数据库一般是这样连得:问题整理以及解决办法错误一:错误原因:本地IP(xxx.xxx.xxx.xxx)没有访问远程数据库的权限。于是下面开启本地IP(xxx.xxx.xxx.xxx)对远程mysql数据库的访问权限。解决办法:1.首先远
2020-10-14 15:47:02 4569
转载 什么是文本语蕴含
文本蕴涵(Textual entailment)在自然语言处理(natural language processing)中,文本蕴涵(Textual entailment)是指两个文本片段有指向关系。当认为一个文本片段真实时,可以推断出另一个文本片断的真实性。也就是指,一个文本片段蕴涵了另一个文本片段的知识。可以分别称蕴涵的文本(entailing texts)为文本(text),被蕴涵的文本(entailed texts)为假设(hypothesis)。一个正面的文本蕴涵的例子(文本蕴涵了假设):
2020-10-08 15:31:51 1569 1
原创 词嵌入的基本方法
词嵌入的基本方法引入问题基本概念基于频率的词嵌入计数向量化TF-IDF向量化具有固定上下文的共现窗口共现矩阵的优点共现矩阵的缺点引入问题当您搜索梅西时,我们如何使计算机告诉您有关足球或罗纳尔多的信息?您如何使计算机理解“苹果是美味的水果”中的“苹果”是可以食用的水果,而不是公司的水果?上述问题的答案:为单词创建表示形式,以捕获单词的含义,语义关系以及所使用的不同上下文类型。基本概念词嵌入是一种表示文本的方式,其中词汇中的每个词都由高维空间中实数值向量表示,为了具有相似含义的单词在向量空间中具有相似
2020-10-07 22:21:42 1502 2
原创 在CentOS环境下部署redis
1.redis简介Redis 是一个高性能的key-value数据库。 redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部 分场合可以对关系数据库起到很好的补充作用。它提供Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便。2.安装redis1.首先通过Secur...
2019-06-25 09:48:22 140
原创 how to change mac address
why we need to change itit can make us anoymoushow to change itfirst of all let us look up our mac address. lets open terminal on desktop. we can find our ip address and mac address by commad ifco...
2019-05-23 22:43:47 214
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人