0-1背包问题描述:
有N件物品和一个重量为M的背包。(每种物品均只有一件)第i件物品的重量是w[i],价值是p[i]。求解将哪些物品装入背包可使价值总和最大。
动态规划的基本思想:
将一个问题分解为子问题递归求解,且将中间结果保存以避免重复计算。通常用来求最优解,且最优解的局部也是最优的。求解过程产生多个决策序列,下一步总是依赖上一步的结果,自底向上的求解。
动态规划算法可分解成从先到后的4个步骤:
1. 描述一个最优解的结构,寻找子问题,对问题进行划分。
2. 定义状态。往往将和子问题相关的各个变量的一组取值定义为一个状态。某个状态的值就是这个子问题的解(若有k个变量,一般用K维的数组存储各个状态下的解,并可根 据这个数组记录打印求解过程。)。
3. 找出状态转移方程。一般是从一个状态到另一个状态时变量值改变。
4.以“自底向上”的方式计算最优解的值。
5. 从已计算的信息中构建出最优解的路径。(最优解是问题达到最优值的一组解)
其中步骤1~4是动态规划求解问题的基础,如果题目只要求最优解的值,则步骤5可以省略。
0-1背包问题求解
用子问题定义状态:即c[i][v]表示前i件物品恰放入一个重量为m的背包可以获得的最大价值。则其状态转移方程便是:
c[i][m]=max{c[i-1][m],c[i-1][m-w[i]]+p[i]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入重量为m的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为c[i-1][m];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的重量为m-w[i]的背包中”,此时能获得的最大价值就是c[i-1][m-w[i]]再加上通过放入第i件物品获得的价值p[i]。
测试数据:
10,3
3,4
4,5
5,6
代码如下:
int pack(int m,int n,int *w,int *p){
//c[i][v]表示前i件物品恰放入一个重量为m的背包可以获得的最大价值
int **c= new int*[n+1];
for(int i=0;i<=n;i++)
{
c[i]=new int *[m+1];
}
for(int i = 0;i<n+1;i++)
c[i][0]=0;
for(int j = 0;j<m+1;j++)
c[0][j]=0;
for(int i = 1;i<n+1;i++){
for(int j = 1;j<m+1;j++){
//当物品为i件重量为j时,如果第i件的重量(w[i-1])小于重量j时,c[i][j]为下列两种情况之一:
//(1)物品i不放入背包中,所以c[i][j]为c[i-1][j]的值
//(2)物品i放入背包中,则背包剩余重量为j-w[i-1],所以c[i][j]为c[i-1][j-w[i-1]]的值加上当前物品i的价值
if(w[i-1]<=j){
if(c[i-1][j]<(c[i-1][j-w[i-1]]+p[i-1]))
c[i][j] = c[i-1][j-w[i-1]]+p[i-1];
else
c[i][j] = c[i-1][j];
}else
c[i][j] = c[i-1][j];
}
}
return c[n][m];
}