用动态规划求解0-1背包问题

0-1背包问题描述:

    有N件物品和一个重量为M的背包。(每种物品均只有一件)第i件物品的重量是w[i],价值是p[i]。求解将哪些物品装入背包可使价值总和最大。

动态规划的基本思想:

将一个问题分解为子问题递归求解,且将中间结果保存以避免重复计算。通常用来求最优解,且最优解的局部也是最优的。求解过程产生多个决策序列,下一步总是依赖上一步的结果,自底向上的求解。

动态规划算法可分解成从先到后的4个步骤:

1. 描述一个最优解的结构,寻找子问题,对问题进行划分。

2. 定义状态。往往将和子问题相关的各个变量的一组取值定义为一个状态。某个状态的值就是这个子问题的解(若有k个变量,一般用K维的数组存储各个状态下的解,并可根    据这个数组记录打印求解过程。)。

3. 找出状态转移方程。一般是从一个状态到另一个状态时变量值改变。

4.以“自底向上”的方式计算最优解的值。

5. 从已计算的信息中构建出最优解的路径。(最优解是问题达到最优值的一组解)

其中步骤1~4是动态规划求解问题的基础,如果题目只要求最优解的值,则步骤5可以省略。

0-1背包问题求解

用子问题定义状态:即c[i][v]表示前i件物品恰放入一个重量为m的背包可以获得的最大价值。则其状态转移方程便是:

c[i][m]=max{c[i-1][m],c[i-1][m-w[i]]+p[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入重量为m的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为c[i-1][m];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的重量为m-w[i]的背包中”,此时能获得的最大价值就是c[i-1][m-w[i]]再加上通过放入第i件物品获得的价值p[i]。

测试数据:
10,3
3,4
4,5
5,6



代码如下:

  int pack(int m,int n,int *w,int *p){  

       //c[i][v]表示前i件物品恰放入一个重量为m的背包可以获得的最大价值  

      int **c= new int*[n+1];

      for(int i=0;i<=n;i++)

     {

          c[i]=new int *[m+1];

     }

      for(int i = 0;i<n+1;i++)  

             c[i][0]=0;  

      for(int j = 0;j<m+1;j++)  

             c[0][j]=0;   

      for(int i = 1;i<n+1;i++){  

          for(int j = 1;j<m+1;j++){  

            //当物品为i件重量为j时,如果第i件的重量(w[i-1])小于重量j时,c[i][j]为下列两种情况之一:  

          //(1)物品i不放入背包中,所以c[i][j]为c[i-1][j]的值  

          //(2)物品i放入背包中,则背包剩余重量为j-w[i-1],所以c[i][j]为c[i-1][j-w[i-1]]的值加上当前物品i的价值  

           if(w[i-1]<=j){  

                if(c[i-1][j]<(c[i-1][j-w[i-1]]+p[i-1]))  

                     c[i][j] = c[i-1][j-w[i-1]]+p[i-1];  

                    else  

                      c[i][j] = c[i-1][j];  

               }else  

                  c[i][j] = c[i-1][j];  

           }  

        }  

        return c[n][m];  

    }  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值