Elasticsearch学习记录

安装

写入

查询

查询与过滤

基础知识

Elasticsearch 使用的查询语言(DSL)拥有一套查询组件,这些组件可以以无限组合的方式进行搭配。这套组件可以在以下两种情况下使用:过滤情况(filtering context)和查询情况(query context)。

  • 过滤情况
    关键词:filter
    使用过滤时,只关心一个问题,该文档是否匹配
  • 查询情况
    关键词:query
    与过滤一样,也需要判断该文档是否匹配,同时还要判断文档的匹配程度。它会计算每个文档与该查询的相关程度,同时将这个相关性分配给表示相关性的字段_score,并根据_score排序,非常适用于全文检索。
Elasticsearch2.0之后,过滤(filters)已经在技术上被排除,
同时,所有的查询(queries)拥有变成不评分查询的能力。???

性能差异

  • filter 只是简单的检查包含或排除,且会被缓存到内存,速度快
  • query 不仅要找出匹配的文档,还要计算每个匹配文档的相关程度,结果也不缓存

选择

通常的规则是,使用查询(query)语句来进行 全文 搜索或者其它任何需要影响 相关性得分 的搜索。除此以外的情况都使用过滤(filters)。

查询关键字

  1. match_all
    匹配所有文档,为elasticsearch的默认查询
    常与filter结合使用,如查询收件箱中的所有邮件,所有邮件被认为有相同的相关性,所以都将获得评分为1的中性_score

  2. match
    无论你在任何字段上进行的是全文搜索还是精确查询,match 查询是你可用的标准查询。

    • 如果你在一个全文字段上使用 match 查询,在执行查询前,它将用正确的分析器去分析查询字符串:
    • 如果在一个精确值的字段上使用它,例如数字、日期、布尔或者一个 not_analyzed 字符串字段,那么它将会精确匹配给定的值:
      在这里插入图片描述
  3. multi_match
    可以在多个字段上执行相同的 match 查询
    在这里插入图片描述

  4. range
    查询在指定区间内的数字或时间
    在这里插入图片描述
    gt 大于
    lt 小于
    gte 大于等于
    lte 小于等于

  5. term
    被用于精确值匹配,这些精确值可能是数字、时间、布尔或者那些 not_analyzed 的字符串:
    在这里插入图片描述

  6. terms
    和 term 查询一样,但它允许你指定多值进行匹配。如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件:
    在这里插入图片描述

  7. exists
    被用于查找那些指定字段中有值 (exists) 的文档。

  8. missing
    被用于查找那些指定字段中无值 (missing) 的文档。
    在这里插入图片描述

组合多查询

bool 将多种查询条件组合成一个整体

  1. must 文档必须匹配这些条件
  2. must_not 文档必须不匹配这些条件
  3. should 如果满足这些语句中的任意语句,则增加_score,否则无影响。主要用于修正相关性得分
  4. filter 必须满足这些条件,但不参与评分(非全文检索时常用)
    在这里插入图片描述
    bool内部可以组合多种查询
    而bool本身也可以嵌套到filter内部

constant_score查询
它将一个不变的常量评分应用于所有匹配的文档。它被经常用于你只需要执行一个 filter 而没有其它查询(例如,评分查询)的情况下。

实际应用
因为本身做的项目是将ES作为缓存使用,并不涉及全文检索的评分功能,所以最终组合出的查询条件如下:

{
  "query": {
    "constant_score": {
      "filter": {
        "bool": {
        	"must": [{
          		"term": {
          			"id": "123456"
          		}
          	}, {
          		"term": {
          			"billType": "sale"
          		}
          	}, {
          		"range": {
          			"billDate": {
          				"gte": 1614528000,
          				"lte": 1615392000
          			}
          		}
          	}, {
          		"term": {
          			"transType": "1111111"
          		}
          	}]
          }
        }
      }
  },
  "sort": [
    {
      "contactName.keyword": {
        "order": "desc"
      }
    }
  ]
}

详细官方文档 组合多查询官方文档

排序

默认情况下,返回的结果是按照 相关性 进行排序的——相关性最高的文档排在最前。

在 Elasticsearch 中, 相关性得分 由一个浮点数进行表示,并在搜索结果中通过 _score 参数返回, 默认排序是 _score 降序。

按照字段的值排序

可以简单的指定一个字段用于排序

“sort”: "id"

字段将会默认升序排序,而按_score降序排序

也可以指定排序方式

"sort": { "date": { "order": "desc" }}

此时,_score值不被计算,且不用于排序
结果数组会包含一个名为sort的元素,包含我们用于排序的值

多级排序

当需要根据多条件进行排序的时候,可以这么写

"sort": [
        { "date":   { "order": "desc" }},
        { "_score": { "order": "desc" }}
    ]

排序条件的顺序是很重要的。结果首先按第一个条件排序,仅当结果集的第一个 sort 值完全相同时才会按照第二个条件进行排序,以此类推。

多级排序并不一定包含 _score 。可以根据一些不同的字段进行排序。

文本排序

文本排序会涉及到拆词和多字段等问题,具体查看官方文档 字符串排序与多字段

本人遇到的情况是需要使用text字段做排序,es对text字段,默认有一个keyword映射
因此,正如在组合多查询里的例子,我们可以直接使用contactName.keyword来做排序

"sort": [
    {
      "contactName.keyword	": {
        "order": "desc"
      }
    }
  ]

参考文档

elasticsearch 学习笔记包括以下内容: 一、Elasticsearch概述: - Elasticsearch是一种开源的分布式搜索和分析引擎,可以用于快速搜索、分析和存储大量的结构化和非结构化数据。 - Elasticsearch与Solr相比有一些区别,包括用户、开发和贡献者社区的规模和成熟度等方面。 二、Elasticsearch安装: 1. 下载Elasticsearch,可以从官方网站或华为云镜像下载。 2. 安装Elasticsearch。 三、安装head插件: - head插件是一个可视化的管理界面,可以方便地管理和监控Elasticsearch集群。 四、安装Kibana: 1. Kibana是一个开源的数据可视化工具,用于展示和分析Elasticsearch中的数据。 2. 下载Kibana并安装。 3. 启动Kibana并进行访问测试。 4. 可选的汉化操作。 五、ES核心概念理解: - 学习ES的核心概念,包括索引、文档、映射、查询等。 以上是elasticsearch学习笔记的主要内容,希望对你有帮助。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Elasticsearch 学习笔记(上)](https://blog.csdn.net/m0_52691962/article/details/127064350)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值