一,什么是哈希
哈希是将任意长度的数据转换为一个数字的过程。这个数字是在一个固定的范围之内的。
转换的方法称为哈希函数,原值经过哈希函数计算后得到的值称为哈希值。
1.哈希特点
(1)一致性:同一个值每次经过同一个哈希函数计算后得到的哈希值是一致的。
F(x)=rand() :每次返回一个随机值,是不好的哈希
(2)散列性:不同的值的哈希值尽量不同,理想情况下每个值对应于不同的数字。
F(x)=1 : 不管输入什么都返回1,是不好的哈希
2.冲突怎么解决
把一个大的集合映射到一个固定大小的集合中,肯定是存在冲突的。这个是抽屉原理或者叫鸽巢理论。
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
(1)拉链法:
链表地址法是使用一个链表数组来存储相应数据,当hash遇到冲突的时候依次添加到链表的后面进行处理。Java里的HashMap是拉链法解决冲突的典型应用场景。
Java8的HashMap中,使用一个链表数组来存储数据,根据元素的哈希值确定存储的数组索引位置,当冲突时,就链接到元素后面形成一个链表,Java8中当链表长度超过8的时候就变成红黑树以优化性能,红黑树也可以视为拉链法的一种变形。
(2)开放地址法
开放地址法是指大小为 M 的数组保存 N 个键值对,其中 M >N。我们需要依靠数组中的空位解决碰撞冲突。基于这种策略的所有方法被统称为“开放地址”哈希表。
线性探测法,就是比较常用的一种“开放地址”哈希表的一种实现方式。线性探测法的核心思想是当冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。简单来说就是:一旦发生冲突,就去寻找下 一个空的散列表地址,只要散列表足够大,空的散列地址总能找到。
Java8中的HashTable就是用线性探测法来解决冲突的。
public synchronized V put(K key, V value) {
// Make sure the value is not null
if (value == null) {
throw new NullPointerException();
}
// Makes sure the key is not already in the hashtable.
Entry<?,?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> entry = (Entry<K,V>)tab[index];
for(; entry != null ; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
entry.value = value;
return old;
}
}
addEntry(hash, key, value, index);
return null;
}
private void addEntry(int hash, K key, V value, int index) {
modCount++;
Entry<?,?> tab[] = table;
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash();
tab = table;
hash = key.hashCode();
index = (hash & 0x7FFFFFFF) % tab.length;
}
// Creates the new entry.
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>) tab[index];
tab[index] = new Entry<>(hash, key, value, e);
count++;
}
(2)冲突解决示例
举个例子,假如散列长度为8,哈希函数是:y=x%7。两种解决冲突的方式如下:
拉链法解决冲突
线性探测法解决冲突
二,几个常见哈希算法
1.MD5
MD5哈希算法是将任意字符散列到一个长度为128位的Bit数组中,得出的结果表示为一个32位的十六进制数字。
MD5哈希算法有以下几个特点:
- 正像快速:原始数据可以快速计算出哈希值
- 逆向困难:通过哈希值基本不可能推导出原始数据
- 输入敏感:原始数据只要有一点变动,得到的哈希值差别很大
- 冲突避免:很难找到不同的原始数据得到相同的哈希值
算法过程:
- 数据填充:
将原数据的二进制值进行补齐。
(1)填充数据:使得长度模除512后得到448,留出64个bit来存储原信息的长度。填充规则是填充一个1,后面全部是0。
(2)填充长度数据:计算原数据的长度数据,填充到最后的64个bit上,如果消息长度数据大于64bit就使用低64位的数据。
- 迭代计算:
将填充好的数据按照每份512的长度进行切分,对每一份依次进行处理,每份的处理方式是使用四个函数进行依次进行计算,每个函数都有四个输入参数,输出也是四个数字,输出的数字作为下一份数据的输入,所有份数的数据处理完毕,得到的四个数字连接起来就是最终的MD5值。
以下图片是整个迭代计算的过程示意图,其中四个初始参数和四个函数定义如下:
//四个初始参数值
A=0x67452301;
B=0xefcdab89;
C=0x98badcfe;
D=0x10325476;
//四个函数的定义
// a、b、c、d是每次计算时候的四个参数
F=(b&c)|((~b)&d);
F=(d&b)|((~d)&c);
F=b^c^d;
F=c^(b|(~d));
- md5的java实现
package com.chybin.algorithm.chapter2;
/**
* Create By 鸣宇淳 on 2019/12/26
**/
public class MD5{
/*
*四个链接变量
*/
private final int A=0x67452301;
private final int B=0xefcdab89;
private final int C=0x98badcfe;
private final int D=0x10325476;
/*
*ABCD的临时变量
*/
private int Atemp,Btemp,Ctemp,Dtemp;
/*
*常量ti
*公式:floor(abs(sin(i+1))×(2pow32)
*/
private final int K[]={
0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee,
0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501,0x698098d8,
0x8b44f7af,0xffff5bb1,0x895cd7be,0x6b901122,0xfd987193,
0xa679438e,0x49b40821,0xf61e2562,0xc040b340,0x265e5a51,
0xe9b6c7aa,0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8,
0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed,0xa9e3e905,
0xfcefa3f8,0x676f02d9,0x8d2a4c8a,0xfffa3942,0x8771f681,
0x6d9d6122,0xfde5380c,0xa4beea44,0x4bdecfa9,0xf6bb4b60,
0xbebfbc70,0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05,
0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665,0xf4292244,
0x432aff97,0xab9423a7,0xfc93a039,0x655b59c3,0x8f0ccc92,
0xffeff47d,0x85845dd1,0x6fa87e4f,0xfe2ce6e0,0xa3014314,
0x4e0811a1,0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391};
/*
*向左位移数,计算方法未知
*/
private final int s[]={7,12,17,22,7,12,17,22,7,12,17,22,7,
12,17,22,5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20,
4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23,6,10,
15,21,6,10,15,21,6,10,15,21,6,10,15,21};
/*
*初始化函数
*/
private void init(){
Atemp=A;
Btemp=B;
Ctemp=C;
Dtemp=D;
}
/*
*移动一定位数
*/
private int shift(int a,int s){
return(a<<s)|(a>>>(32-s));//右移的时候,高位一定要补零,而不是补充符号位
}
/*
*主循环
*/
private void MainLoop(int M[]){
int F,g;
int a=Atemp;
int b=Btemp;
int c=Ctemp;
int d=Dtemp;
for(int i = 0; i < 64; i ++){
if(i<16){
F=(b&c)|((~b)&d);
g=i;
}else if(i<32){
F=(d&b)|((~d)&c);
g=(5*i+1)%16;
}else if(i<48){
F=b^c^d;
g=(3*i+5)%16;
}else{
F=c^(b|(~d));
g=(7*i)%16;
}
int tmp=d;
d=c;
c=b;
b=b+shift(a+F+K[i]+M[g],s[i]);
a=tmp;
}
Atemp=a+Atemp;
Btemp=b+Btemp;
Ctemp=c+Ctemp;
Dtemp=d+Dtemp;
}
/*
*填充函数
*处理后应满足bits≡448(mod512),字节就是bytes≡56(mode64)
*填充方式为先加一个0,其它位补零
*最后加上64位的原来长度
*/
private int[] add(String str){
int num=((str.length()+8)/64)+1;//以512位,64个字节为一组
int strByte[]=new int[num*16];//64/4=16,所以有16个整数
for(int i=0;i<num*16;i++){//全部初始化0
strByte[i]=0;
}
int i;
for(i=0;i<str.length();i++){
strByte[i>>2]|=str.charAt(i)<<((i%4)*8);//一个整数存储四个字节,小端序
}
strByte[i>>2]|=0x80<<((i%4)*8);//尾部添加1
/*
*添加原长度,长度指位的长度,所以要乘8,然后是小端序,所以放在倒数第二个,这里长度只用了32位
*/
strByte[num*16-2]=str.length()*8;
return strByte;
}
/*
*调用函数
*/
public String getMD5(String source){
init();
int strByte[]=add(source);
for(int i=0;i<strByte.length/16;i++){
int num[]=new int[16];
for(int j=0;j<16;j++){
num[j]=strByte[i*16+j];
}
MainLoop(num);
}
return changeHex(Atemp)+changeHex(Btemp)+changeHex(Ctemp)+changeHex(Dtemp);
}
/*
*整数变成16进制字符串
*/
private String changeHex(int a){
String str="";
for(int i=0;i<4;i++){
str+=String.format("%2s", Integer.toHexString(((a>>i*8)%(1<<8))&0xff)).replace(' ', '0');
}
return str;
}
/*
*单例
*/
private static MD5 instance;
public static MD5 getInstance(){
if(instance==null){
instance=new MD5();
}
return instance;
}
private MD5(){};
public static void main(String[] args){
String str=MD5.getInstance().getMD5("123");
System.out.println(str);
}
}
2.SHA
SHA类似MD5,也是一种信息摘要算法,也是将任意长度的字符串转换为固定长度的数字的算法。SHA算法是一个家族,有五个算法:SHA-1、SHA-224、SHA-256、SHA-384,和SHA-512。这些变体除了生成摘要的长度、循环运行的次数等一些微小差异外,算法的基本结构是一致的。
SHA-1算法的结果是一个160个bit的数字,比MD5的128个bit要长32位,碰撞几率要低了2^32倍。可是SHA-1和MD5一样已经被人破解,已经不安全了。
SHA-256从名字上看就表明了它的值存储在长度为256的bit数组中的,SHA-512信息摘要长度是512个bit。
SHA-224是SHA256的精简版本,SHA-384是SHA-512的精简版本,精简版本主要用在安全等级要求不太高的场景,比如只是验证下文件的完整性。使用什么版本的SHA取决于安全要求和算法速度,毕竟长度越长算法计算时间约长,但是安全等级高。
SHA算法过程:
SHA算法的底层原理和MD5很相似,只是在摘要分段和处理细节上有少许差别,他们都是第一步将原数据进行填充,填充到512的整数倍,填充的信息包括10数据填充和长度填充,第二步切分为相同大小的块,第三步进行对每一块迭代,每块进行N轮运算,最终得到的值拼接起来就是最终的哈希值。
以下是MD5、SHA-1、SHA-2系列的算法过程比较:
MD5算法过程示意图:
MD5是对每一块数据分为四个部分,用四个函数进行运算。最终生成128位的哈希值。
SHA-1算法过程示意图:
SHA-1是将每一块数据分为五个部分。
SHA-2算法过程示意图:
SHA-2是分为八个部分,算法也更加复杂。
3.SimHash
SimHash是Google提出的一种判断文档是否重复的哈希算法,他是将文本转换为一个64位的哈希值,然后计算两个哈希值的距离,如果小于n(n一般是3)就认为这两个文本是相似的。
之所以能够这样判断是否相似是因为SimHash算法不同于MD5之类的算法,SimHash算法是局部敏感的哈希算法,MD5算法是全局敏感的哈希算法。在MD5中原数据只要有一个字符的变化,哈希值就会变化很大,而在SimHash算法中,原数据变化一小部分,哈希值也只有很小一部分的变化,所以只要哈希值很类似,就意味着原数据就很类似。
算法实现:
参考这个博客【[Algorithm] 使用SimHash进行海量文本去重】
(1)第一步:哈希
- 分词: 将文本进行分词,并给单词分配权重。
- hash: 对每个次进行hash计算,得到哈希值。
- 加权: 对每个单词的has进行加权。
- 合并: 把上一步加权hash值合并累计起来。
- 降维: 把上一步累加起来的值变为01。如果每一位大于0 记为 1,小于0 记为 0。
(2)第二步:计算海明距离
两个simhash对应二进制(01串)取值不同的数量称为这两个simhash的海明距离。
举例如下: 10101 和 00110 从第一位开始依次有第一位、第四、第五位不同,则海明距离为3。
异或就是如果a、b两个值不相同,则异或结果为1。如果a、b两个值相同,异或结果为0。两个simhash值进行异或,得出的结果中1的个数就是海明距离。
判断两个文本是否相似,就计算两个simhash哈希值的海明距离,根据经验,如果海明距离小于3就可以判定两个文本是相似的。
4.GeoHash
GeoHash 算法将经纬度哈希为一个数字,然后将数字base32编码为一个字符串。
比如:北海公园的经纬度是:(39.928167,116.389550),对应的GeoHash值可以为wx4g、wx4g0、wx4g0s、wx4g0s8、wx4g0s8q。GeoHash值代表的是这个经纬度点所在的一个矩形区域,长度越长矩形面积约小,表示的越精确。
两个位置的GeoHash值前部分一样的位数越多,说明两个位置离得越近,百度地图的查找附近、滴滴打车查找附近的车辆功能就可以使用这个算法。
GeoHash算法过程
下面对于北海公园的经纬度(39.928167,116.389550)进行编码,了解下算法过程。
(1)第一步:纬度编码
将整个地球从水平方向上进行逐步切分,确定纬度39.928167在哪个区域中。
纬度范围是-90到90,每次平均分为两份,进行逐步细化地迭代。
- 第一次迭代:处于-90到0的标记为0,0到90的标记为1,39.928167处于1的区间,所以最终结果的第一位是1。
- 第二次迭代:对上一步标记为1的部分平分,0到45标记为0,45到90标记为1,39.928167标记为1处于0的区间,所以最终结果的第二位是0。
- 第三次迭代:对上一步标记为0的部分平分,0到22.5标记为0,22.5到45标记为1,39.928167标记为1处于0的区间,所以最终结果的第三位是0
- 第四次迭代:对上一步标记为0的部分平分,22.5到33.75标记为0,33.75到45标记为1,39.928167标记为1处于1的区间,所以最终结果的第三位是1。
经过N次迭代后,得到一个长度为N的二进制值,比如得到的值为1011100011,这个就是对纬度进行的编码最终值。
(2)第二步:经度编码
对经度的编码过程跟对纬度编码过程十分类似,不同点是经度范围是-180到180,对经度116.389550经过N次迭代后得到编码值。比如得到1101001011。这个就是对经度编码的最终值。
(3)第三步:合并经纬度
对纬度编码值、经度编码值进行合并,合并规则是奇数位放纬度、偶数位放经度,合并为一个新的二进制串。
(4)第四步:转换为字符串
将上一步合并的二进制11100 11101 00100 01111每5位一段转换为十进制,结果是28、29、4、15,Base32编码后为wx4g。这个就是北海公园的经纬度(39.928167,116.389550)最终的GeoHash编码值。
以下图表是二进制数字、base32字符对应表:
Decimal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Base | 32 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | b | c | d | e | f |
Decimal | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
Base | 32 | h | j | k | m | n | p | q | r | s | t | u | v | w | x | y |