14、云环境下数据保密与完整性保障方案解析

云环境下数据保密与完整性保障方案解析

1. 相关工作概述

在云环境中,数据的保密性和完整性至关重要。目前已经提出了多种技术来解决这些问题,但都存在一定的局限性。

  • 数据保密技术

    • 数据碎片化 :有方案提出使用数据碎片化来确保数据保密性,但该模型会引入显著的存储开销。
    • 加密云存储方案 :一些方案提出了加密云存储方案,可解决保密性和完整性问题并支持可搜索加密,但依赖云提供商支持特定协议。
    • 访问控制方案 :基于不同对称密钥对每个数据块进行加密的通用访问控制方案,虽采用密钥层次结构的密钥派生方法来限制开销,但仍需云提供商支持协议。
    • 文件加密方案 :基于优化的Merkle哈希树的文件加密方案,虽提出通用哈希的MAC方案来提供数据保密性和完整性,但需要额外的可信存储。
    • 加密文件系统(CFS) :CFS可用于云计算环境的安全存储,但会带来显著的计算和网络开销,且可能无法有效应对所有攻击向量。
  • 数据完整性检查技术

    • 可证明数据拥有(PDP)模型 :Ateniese等人提出的PDP模型可让客户端验证外包数据的完整性,无需检索整个数据集,但仅支持静态数据
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值