
语音识别
文章平均质量分 68
奔跑的毛毛虫
追求幸福,创造价值
展开
-
语音识别1:SpeechRecognition、Speech第三方库的安装和简单语音对话示例
安装:选择第三方库的下载地址可以提高下载的速率。测试:是否安装好,查看其版本号。使用麦克风录音前,需要安装PyAudio插件。安装时出现如下错误:提示错误: error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Tools": https://visualstudio.microsoft.com/downloads/此时,首先要下载安装相应的whl文件,.原创 2021-04-06 10:33:09 · 9708 阅读 · 1 评论 -
语音的基本概念(理解senone时看的较好的文章)
这是CMU sphinx语音识别系统wiki的第一部分,主要是介绍语音的一些基本概念的。Basic concepts of speech语音的基本概念Speech is a complex phenomenon. People rarely understand how is it produced and perceived. The naive perception ...转载 2018-09-13 22:46:14 · 3893 阅读 · 1 评论 -
自然语言处理中的自注意力机制(Self-Attention Mechanism)(基本Attention模型的改进)
基础文章《Attention is All You Need》https://zhuanlan.zhihu.com/p/32501462?edition=yidianzixun&utm_source=yidianzixun&yidian_docid=0I59CUVb原创 2018-09-18 19:05:57 · 3067 阅读 · 0 评论 -
Attention Model详解(Attention入门参考文献第二篇)
要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model(后文有时会简称AM模型)这个词。AM模型应该说是过去一年来NLP领域中的重要进展之一,在很多场景被证明有效。听起来AM很高大上,其实它的基本思想是相当直观简洁的。 AM 引言: 引用网上通俗的解释,首先,请您睁开眼并确认自己处于意识清醒状态;第二步,请找到本文最近出现的一个“Attentio...转载 2018-09-12 23:17:46 · 2261 阅读 · 0 评论 -
深度学习中的Attention模型介绍及其进展(attention入门参考文献 第一篇)
1. 基本原理 Attention模型最初应用于图像识别,模仿人看图像时,目光的焦点在不同的物体上移动。当神经网络对图像或语言进行识别时,每次集中于部分特征上,识别更加准确。如何衡量特征的重要性呢?最直观的方法就是权重,因此,Attention模型的结果就是在每次识别时,首先计算每个特征的权值,然后对特征进行加权求和,权值越大,该特征对当前识别的贡献就大。 机器翻译中的Attentio...转载 2018-09-12 18:01:11 · 13220 阅读 · 2 评论 -
关于深度学习中的注意力机制,这篇文章从实例到原理都帮你参透了(很系统,重点看)
最近两年,注意力模型(Attention Model)被广泛使用在自然语言处理、图像识别及语音识别等各种不同类型的深度学习任务中,是深度学习技术中最值得关注与深入了解的核心技术之一。 本文以机器翻译为例,深入浅出地介绍了深度学习中注意力机制的原理及关键计算机制,同时也抽象出其本质思想,并介绍了注意力模型在图像及语音等领域的典型应用场景。 注意力模型最近几年在深度学习各个领域被广泛使...转载 2018-09-16 12:00:57 · 1322 阅读 · 0 评论 -
Encoder-Decoder模型和Attention模型
1.Encoder-Decoder模型及RNN的实现所谓encoder-decoder模型,又叫做编码-解码模型。这是一种应用于seq2seq问题的模型。那么seq2seq又是什么呢?简单的说,就是根据一个输入序列x,来生成另一个输出序列y。seq2seq有很多的应用,例如翻译,文档摘取,问答系统等等。在翻译中,输入序列是待翻译的文本,输出序列是翻译后的文本;在问答系统中,输入序列是提出的...转载 2018-09-11 22:13:51 · 2932 阅读 · 0 评论 -
使用Encoder-Decoder模型自动生成对联的思路——encode-decoder理解(3)
|Encoder-Decoder模型Encoder-Decoder框架可以看作是一种文本处理领域的研究模式,应用场景异常广泛。下图是文本处理领域里常用的Encoder-Decoder框架最抽象的一种表示: 图1. 抽象的Encoder-Decoder框架Encoder-Decoder框架可以这...转载 2018-09-11 22:01:12 · 1133 阅读 · 0 评论 -
深度学习(BOT方向) 学习笔记(2) RNN Encoder-Decoder 及 LSTM 学习
再看 RNN Encoder-Decoder框架这里复习下Sequence2Sequence任务到底是什么,所谓的Sequence2Sequence任务主要是泛指一些Sequence到Sequence的映射问题,Sequence在这里可以理解为一个字符串序列,当我们在给定一个字符串序列后,希望得到与之对应的另一个字符串序列(如 翻译后的、如语义上对应的)时,这个任务就可以称为Sequen...转载 2018-09-11 21:52:35 · 620 阅读 · 0 评论 -
深度学习(BOT方向) 学习笔记(1) Sequence To Sequence 学习
1、 Seq 2 Seq是什么从一个Sequence做某些工作映射到(to)另外一个Sequence的任务 具体结合实际应用来说,如下的连个任务都可以看做是Seq2Seq的任务“ 1、SMT翻译任务(源语言的语句 -> 目标语言的语句) 2、对话任务(上下文语句->应答语句) 诸如上图,其实也就是一个示例(从ABC 这个Sequence 映射到 WXYZ)2、RNN ...转载 2018-09-11 21:38:16 · 696 阅读 · 0 评论