分解质因数

原文:点击打开链接


原理&&方法
把一个合数分解为若干个质因数的乘积的形式,即求质因数的过程叫做分解质因数,分解质因数只针对合数
求一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止。分解质因数的算式的叫短除法,和除法的性质差不多,还可以用来求多个个数的公因式:
以24为例:
2 -- 24
2 -- 12
2 -- 6
3 (3是质数,结束)
得出 24 = 2 × 2 × 2 × 3 = 2^3 * 3
代码
可先用素数筛选法,筛选出符合条件的质因数,然后for循环遍历即可,通过一道题目来show一下这部分代码
题目描述:  
求正整数N(N>1)的质因数的个数。  
相同的质因数需要重复计算。如120=2*2*2*3*5,共有5个质因数。  
输入:  
可能有多组测试数据,每组测试数据的输入是一个正整数N,(1<N<10^9)。  
输出:  
对于每组数据,输出N的质因数的个数。  
样例输入:  
120  
样例输出:  
5  
提示:  
注意:1不是N的质因数;若N为质数,N是N的质因数。  
#include <stdio.h>  
int main()  
{  
    int n, count, i;  
    while (scanf("%d", &n) != EOF) {  
        count = 0;  
        for (i = 2; i * i <= n; i ++) {  
            if(n % i == 0) {  
                while (n % i == 0) {  
                    count ++;  
                    n /= i;  
                }  
            }  
        }  
        if (n  > 1) {  
            count ++;  
        }  
        printf("%d\n", count);  
    }  
    return 0;  
}  
 

深入理解
我所谓的深入理解,就是通过4星的题目来灵活运用分解质因数的方法,题目如下
题目描述:  
给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k+1)整除。  
输入:  
两个整数n(2<=n<=1000),a(2<=a<=1000)  
输出:  
一个整数.  
样例输入:  
6 10  
样例输出:  
1  
思路
a^k和n!都可能非常大,甚至超过long long int的表示范围,所以也就不能直接用取余操作判断它们之间是否存在整除关系,因此我们需要换一种思路,从分解质因数入手,假设两个数a和b:
a = p1^e1 * p2^e2 * ... * pn^en,  b = p1^d1 * p2^d2 * ... * pn^dn, 则b除以a可以表示为:
b / a = (p1^d1 * p2^d2 * ... * pn^dn) / (p1^e1 * p2^e2 * ... * pn^en)
若b能被a整除,则 b / a必为整数,且两个素数必互质,则我们可以得出如下规律:
若a存在质因数px,则b必也存在该质因数,且该素因数在b中对应的幂指数必不小于在a中的幂指数
另b = n!, a^k = p1^ke1 * p2^ke2 * ... * pn^ken,因此我们需要确定最大的非负整数k即可。要求得该k,我们只需要依次测试a中每一个素因数,确定b中该素因数是a中该素因数的幂指数的多少倍即可,所有倍数中最小的那个即为我们要求得的k
分析到这里,剩下的工作似乎只是对a和n!分解质因数,但是将n!计算出来再分解质因数,这样n!数值太大。考虑n!中含有素因数p的个数,即确定素因数p对应的幂指数。我们知道n!包含了从1到n区间所有整数的乘积, 这些乘积中每一个p的倍数(包括其本身)都对n!贡献至少一个p因子,且我们知道在1到n中p的倍数共有n/p个。同理,计算p^2,p^3,...即可
#include <stdio.h>  
#include <stdlib.h>  
#include <string.h>  
   
#define N 1001  
   
int prime[N], size;  
   
/**  
 * 素数筛选法进行预处理 
 */  
void initProcess()  
{  
    int i, j;  
       
    for (prime[0] = prime[1] = 0, i = 2; i < N; i ++) {  
        prime[i] = 1;  
    }  
    size = 0;  
    for (i = 2; i < N; i ++) {  
        if (prime[i]) {  
            size ++;  
            for (j = 2 * i; j < N; j += i) {  
                prime[j] = 0;  
            }  
        }  
    }  
}  
int main(void)  
{  
    int i, n, a, k, num, count, base, tmp, *ansbase, *ansnum;  
       
    // 预处理  
    initProcess();  
   
    while (scanf("%d %d", &n, &a) != EOF) {  
        ansbase = (int *)calloc(size, sizeof(int));  
        ansnum = (int *)calloc(size, sizeof(int));  
   
        // 将a分解质因数  
        for (i = 2, num = 0; i < N && a != 1; i ++) {  
            if (prime[i] && a % i == 0) {  
                ansbase[num] = i;  
                ansnum[num] = 0;  
                   
                while (a != 1 && a % i == 0) {  
                    ansnum[num] += 1;  
                    a = a / i;  
                }  
   
                num ++;  
            }  
        }  
   
        // 求最小的k  
        for (i = 0, k = 0x7fffffff; i < num; i ++) {  
            base = ansbase[i];  
            count = 0;  
            while (base <= n) {  
                count += n / base;  
                base *= ansbase[i];  
            }  
            tmp = count / ansnum[i];  
            if (tmp < k) k = tmp;  
        }  
   
        printf("%d\n", k);    
    }  
  
    return 0;  
}  

约数个数定理
对于一个大于1的正整数n可以分解质因数:n = p1^a1 * p2^a2 * p3^a3 * ... * pn^an, 则n的正约数的个数为:(a1 + 1) * (a2 + 1) * ... *(an + 1).其中p1,p2,..pn都是n的质因数,a1, a2...an是p1,p2,..pn的指数
证明
n可以分解质因数:n=p1^a1 * p2^a2 * p3^a3 * … * pk^ak,
由约数定义可知p1^a1的约数有:p1^0, p1^1, p1^2......p1^a1 ,共(a1+1)个;同理p2^a2的约数有(a2+1)个......pk^ak的约数有(ak+1)个
故根据乘法原理:n的约数的个数就是(a1+1)*(a2+1)*(a3+1)*…* (ak+1)
题目描述:  
输入n个整数,依次输出每个数的约数的个数  
输入:  
输入的第一行为N,即数组的个数(N<=1000)  
接下来的1行包括N个整数,其中每个数的范围为(1<=Num<=1000000000)  
当N=0时输入结束。  
输出:  
可能有多组输入数据,对于每组输入数据,  
输出N行,其中每一行对应上面的一个数的约数的个数。  
样例输入:  
5  
1 3 4 6 12  
样例输出:  
1  
2  
3  
4  
6  
#include <stdio.h>  
#include <stdlib.h>  
   
#define N 40000  
   
typedef long long int lint;  
   
int prime[N], size;  

void init()  
{  
    int i, j;  
   
    for (prime[0] = prime[1] = 0, i = 2; i < N; i ++) {  
        prime[i] = 1;  
    }  
       
    size = 0;  
   
    for (i = 2; i < N; i ++) {  
        if (prime[i]) {  
            size ++;  
            for (j = 2 * i; j < N; j += i)  
                prime[j] = 0;  
        }  
    }  
}  
lint numPrime(int n)  
{  
    int i, num, *ansnum, *ansprime;  
    lint count;  
   
    ansnum = (int *)malloc(sizeof(int) * (size + 1));  
    ansprime = (int *)malloc(sizeof(int) * (size + 1));  
   
    for (i = 2, num = 0; i < N && n != 1; i ++) {  
        if (prime[i] && n % i == 0) {  
            ansprime[num] = i;  
            ansnum[num] = 0;  
            while (n != 1 && n % i == 0) {  
                ansnum[num] += 1;  
                n /= i;  
            }  
            num ++;  
        }  
    }  
   
    if (n != 1) {  
        ansprime[num] = n;  
        ansnum[num] = 1;  
        num ++;  
    }  
   
    for (i = 0, count = 1; i < num; i ++) {  
        count *= (ansnum[i] + 1);  
    }  
   
    free(ansnum);  
    free(ansprime);  
   
    return count;  
}  
int main(void)  
{  
    int i, n, *arr;  
    lint count;  
   
    init();  
   
    while (scanf("%d", &n) != EOF && n != 0) {  
        arr = (int *)malloc(sizeof(int) * n);  
        for (i = 0; i < n; i ++) {  
            scanf("%d", arr + i);  
        }  
   
        for (i = 0; i < n; i ++) {  
            count = numPrime(arr[i]);  
            printf("%lld\n", count);  
        }  
   
        free(arr);  
    }  
   
    return 0;  
}  



  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值