目标跟踪
文章平均质量分 54
clyfly
学习
展开
-
从最大似然到EM算法浅解-简单易懂难得的好文章
机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光。 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明转载 2015-01-05 18:19:28 · 1082 阅读 · 0 评论 -
特征点检测学习(surf算法)
特征点检测学习(surf算法) 在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高。后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文意思为快速鲁棒特征。本文不是专门介绍surf所有理论(最好的理论是作者的论文)的,只是对surf算法进行转载 2015-01-05 11:09:58 · 813 阅读 · 0 评论 -
Camshift算法
OpenCV的人脸追踪算法Camshift(连续自适应的Meanshift算法)由以下四个步骤组成:1、创建一个颜色直方图表示人脸特征;2、对视频图像中每一帧的每一个像素进行计算“人脸存在的可能性”;3、在每个视频帧中移动人脸矩形框的位置;4、计算人脸的大小和角度。下面是每一步骤的详细工作:一、创建一个表示人脸的Camshift直方图,它是以颜色值的转载 2015-01-03 10:43:12 · 747 阅读 · 0 评论 -
分类器
分类器在目标检测方面的应用,首先说一下分类器的非官方的概念。对于目标检测,分类器所要做的事就是区分出那个是目标那个是背景。从本质上说,分类器也是用来建立模型的,建立判别模型。判别模型的建立涉及到训练,训练的过程就是可以说通过训练建立一个分类函数,就像是教小孩认知,给他看不同大小形状的苹果和香蕉,告诉他这那个是香蕉那个是苹果,训练他有判别力的时候,拿出一个苹果或香蕉,让他自己辨认这是什么。所以用分类转载 2015-01-02 12:19:53 · 522 阅读 · 0 评论 -
RGB/HSV/YUV颜色空间模型总结
RGB颜色空间 计算机色彩显示器显示色彩的原理与彩色电视机一样,都是采用R、G、B相加混色的原理,通过发射出三种不同强度的电子束,使屏幕内侧覆盖的红、绿、蓝磷光材料发光而产生色彩的。这种色彩的表示方法称为RGB色彩空间表示。在多媒体计算机技术中,用的最多的是RGB色彩空间表示。 根据三基色原理,用基色光单位来表示光的量,则在RGB色彩空间,任意色光F都可以用R转载 2015-01-03 10:21:06 · 793 阅读 · 0 评论 -
他人总结的TLD视觉跟踪算法(源代码、文章、原理等)非常好的东西
TLD算法好牛逼一个,这里有个视频,是作者展示算法的效果,http://www.56.com/u83/v_NTk3Mzc1NTI.html。下面这个csdn博客里有人做的相关总结,感觉挺好的,收藏了!下面有个Compressive Tracking的网址,提供的代码很少,但实时性很好,matlab代码下下来就能用。 以下博文转自:http://blog.csdn.net/win转载 2015-01-03 19:58:18 · 3019 阅读 · 1 评论 -
基于MeanShift的Camshift算法原理详解(整理)
CamShift算法,即”Continuously Apative Mean-Shift”算法,是一种运动跟踪算法。它主要通过视频图像中运动物体的颜色信息来达到跟踪的目的。camshift利用目标的颜色直方图模型将图像转换为颜色概率分布图,初始化一个搜索窗的大小和位置,并根据上一帧得到的结果自适应调整搜索窗口的位置和大小,从而定位出当前图像中目标的中心位置。该算法分为三个部分:1)转载 2015-01-03 11:14:37 · 1067 阅读 · 0 评论 -
TLD介绍及大牛的学习文章
TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek Kalal在其攻读博士学位期间提出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。同时,通过一种改进的在线学习机制不断更新跟踪模块的“显转载 2015-01-02 17:41:54 · 796 阅读 · 0 评论 -
计算机视觉三大国际会议ICCV、ECCV、CVPR
这篇贴子也是以前某个论坛某个牛人写的,现有必要转载一下。与所有其它学术领域都不同,计算机科学使用会议而不是期刊作为发表研究成果的主要方式。目前国外计算机界评价学术水平主要看在顶级学术会议上发表的论文。特别是在机器学习、计算机视觉和人工智能领域,顶级会议才是王道。(但中国目前的国情不同于国外,我国主要看在学术期刊上发表的SCI论文。这种“一切以SCI期刊为评价标准”的做法已有不少批评。) 会议论文比转载 2015-12-01 17:49:24 · 22038 阅读 · 0 评论