SAP应用过程所要关注的业务、系统深入问题

今年几次听到要求IT人员深入业务的说法,这个动机非常的好,可是当IT指出业务的一些不当操作的时候,业务没有人肯承担自己的问题,可以摆出很多的理由,归结到最后,可以很冠冕和堂皇地要求你去优化改进系统。

 

凭借10年多的工作经验,没吃过猪肉也看见过猪跑了,对于各个行业的业务流程,除了非常细节性的操作,比如你采购员跟供应商的交流,技术人员对产品设计的细节的确定等,基本上还是非常了解各个业务模块的工作模式,以及最合理的工作流程应该是怎么配置的。

 

业务的改变也是需要时间,在sap经过蓝图确认流程之后的1-2年内,如果没有遇到公司架构的大规模调整,并不是非常适合做流程的变革的,毕竟蓝图谈好的流程都是经过一个过程的讨论和分析,是相对较优的,如果总是把流程优化放在日常来处理,结果不见得有多好。

 

再一个实际问题,就是人员的流动性过强不适合做流程的变革,2008年遇到了比较厉害的人员流动,很多系统操作比较熟练的人员离职,当然这也是人员管理部门的一个选择,他们评价人员的标准与SAP系统应用联系不是太密切,找来一个新厂长,这个厂长与某个主管业务人员不合,那么下面的人就得走人,结果人员变动非常厉害。这种环境下更不适合做流程的变革,反而2009年因为经济危机的影响,人员会相对比较稳定,是一个比较好的时机。关键是流程的固化也到了一定的程度。

 

再就是不得不说的一个核心问题,报表的数据都放在眼前,业务一直还在要求我们去深入业务,提出的需求都走在了系统的后面,就是说,系统有现成的数据,他们并不知道,每天对系统的那些操作是非常机械的,只是填进去几个数据,产生的结果不理解,业务处理的过程还是不理解。

 

这个问题的解决办法,培训不是完全能搞定的。我感觉最好还是要求部门经理负责制,首先必须保证部门经理的能力要能够达到理解ERP,懂系统操作的程度,这在综合素质模型和岗位说明书中有规定。然后部门的系统应用情况要由部门经理去控制和管理,这样才能够带来系统的普遍成功。

 

所以,IT深入业务是一个方向,而反归来业务深入系统也是一个重点。

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/15027489/viewspace-533337/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/15027489/viewspace-533337/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值