PyTorch
Serayah
菜地不知所措
展开
-
用PyTorch创建神经网络
import torchimport torch.nn as nnimport torch.nn.functional as Fclass Net(nn.Module): def __init__(self): super().__init__() #定义第一个卷积层,输入维度为1,输出维度为6,卷积核大小为3*3 self.conv1=nn.Conv2d(1,6,3) #定义第二个 self.conv2=nn.原创 2021-07-28 00:55:14 · 334 阅读 · 0 评论 -
卷积神经网络和循环神经网络
import torchimport torch.nn.functional as F# 神经网络的类class Net(torch.nn.Module): def __init__(self): super().__init__() # 两个卷积层 self.conv1=torch.nn.Conv2d(1,10,kernel_size=5) self.conv2=torch.nn.Conv2d(10,20,kernel_siz.原创 2021-07-26 18:46:29 · 599 阅读 · 0 评论 -
用Pytorch进行图像分类
用Pytorch进行图像分类(对一张猫和一张鱼的图片进行区分)传统挑战1、首先需要数据要想有效地使用深度学习技术,需要较大量的数据来训练神经网络,让神经网络学习并记忆他们的特征。所以我们需要很多鱼和猫的图片**监督学习和无监督学习的区别有监督学习必须要有训练集和测试样本。在训练集中找规律,而对测试样本使用这种规律。非监督学习没有训练集,只有一组数据,在该数据集中寻找规律有监督学习的方法就是识别事物,识别的结果表现在给识别数据加上了标签。因此训练样本集必须由带标签的样本组成。而非监督学习方法只原创 2021-07-23 13:05:21 · 2894 阅读 · 2 评论