多项式长除法

多项式长除法 是代数中的一种算法,用一个同次或低次的多项式去除另一个多项式。是常见算数技巧长除法的一个推广版本。它可以很容易地手算,因为它将一个相对复杂的除法问题分解成更小的一些问题。

[编辑]计算

\frac{x^3 - 12x^2 - 42}{x-3}.

把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐,写成以下这种形式:

\frac{x^3 - 12x^2 + 0x - 42}{x-3}.
然后商和余数可以这样计算:
将分子的第一项除以分母的最高次项(即次数最高的项,此处为 x )。结果写在横线之上( x 3  ÷  x  =  x 2 ).
  1. \begin{matrix}x^2\\\qquad\qquad\quad x-3\overline{) x^3 - 12x^2 + 0x - 42}\end{matrix}
    将分母乘以刚得到结果(最终商的第一项),乘积写在分子前两项之下(同类项对齐) ( x 2  · ( x  − 3) =  x 3  − 3 x 2 ).
  2. \begin{matrix}x^2\\\qquad\qquad\quad x-3\overline{) x^3 - 12x^2 + 0x - 42}\\\qquad\;\; x^3 - 3x^2\end{matrix}
    从分子的相应项中减去刚得到的乘积(消去相等项,把不相等的项结合起来),结果写在下面。(( x 3  − 12 x 2 ) − ( x 3  − 3 x 2 ) = −12 x 2  + 3 x 2  = −9 x 2 )然后,将分子的下一项“拿下来”。
  3. \begin{matrix}x^2\\\qquad\qquad\quad x-3\overline{) x^3 - 12x^2 + 0x - 42}\\\qquad\;\; \underline{x^3 - 3x^2}\\\qquad\qquad\qquad\quad\; -9x^2 + 0x\end{matrix}
    把减得的差当作新的被除式,重复前三步(直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式 )
  4. \begin{matrix}\; x^2 - 9x\\\qquad\quad x-3\overline{) x^3 - 12x^2 + 0x - 42}\\\;\; \underline{\;\;x^3 - \;\;3x^2}\\\qquad\qquad\quad\; -9x^2 + 0x\\\qquad\qquad\quad\; \underline{-9x^2 + 27x}\\\qquad\qquad\qquad\qquad\qquad -27x - 42\end{matrix}
    重复第四步。这次没什么可以“拿下来”了。
  5. \begin{matrix}\qquad\quad\;\, x^2 \; - 9x \quad - 27\\\qquad\quad x-3\overline{) x^3 - 12x^2 + 0x - 42}\\\;\; \underline{\;\;x^3 - \;\;3x^2}\\\qquad\qquad\quad\; -9x^2 + 0x\\\qquad\qquad\quad\; \underline{-9x^2 + 27x}\\\qquad\qquad\qquad\qquad\qquad -27x - 42\\\qquad\qquad\qquad\qquad\qquad \underline{-27x + 81}\\\qquad\qquad\qquad\qquad\qquad\qquad\;\; -123\end{matrix}
    横线之上的多项式即为商,而剩下的 (−123) 就是余数。
\frac{x^3 - 12x^2 - 42}{x-3} = \underbrace{x^2 - 9x - 27}_{q(x)}  \underbrace{-\frac{123}{x-3}}_{r(x)/g(x)}
算数的 长除法 可以看做以上算法的一个特殊情形,即所有  x  被替换为10的情形。

除法变换[编辑]

使用多项式长除法可以将一个多项式写成 除数-商 的形式(经常很有用)。 考虑多项式 P(x), D(x) ((D)的次数 < (P)的次数)。 然后,对某个商多项式 Q(x) 和余数多项式 R(x) ((R)的系数 < (D)的系数),

\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)} \implies P(x) = D(x)Q(x) + R(x).

这种变换叫做除法变换,是从算数等式 {\mathrm{dividend} = \mathrm{divisor} \times \mathrm{quotient} + \mathrm{remainder} }.[1] 得到的。

应用[编辑]

多项式的因式分解[编辑]

有时某个多项式的一或多个根已知,可能是使用 rational root theorem 得到的。如果一个 n 次多项式 P(x) 的一个根 r 已知,那么 P(x) 可以使用多项式长除法因式分解为 (x-r)Q(x) 的形式,其中 Q(x) 是一个 n-1 次的多项式。简单来说,Q(x) 就是长除法的商,而又知 r 是 P(x) 的一个根、余式必定为零。

相似地,如果不止一个根是已知的,比如已知 r 和 s 这两个,那么可以先从 P(x) 中除掉线性因子 x-r 得到 Q(x),再从 Q(x) 中除掉 x-s,以此类推。或者可以一次性地除掉二次因子 x2-(r+s)x+rs。

使用这种方法,有时超过四次的多项式的所有根都可以求得,虽然这并不总是可能的。例如,如果 rational root theorem 可以用来求得一个五次方程的一个(比例)根,它就可以被除掉以得到一个四次商式;然后使用四次方程求根的显式公式求得剩余的根。

寻找多项式的切线[编辑]

多项式长除法可以用来在给定点上查找给定多项式的切线方程。[2] 如果 R(x) 是 P(x)/(x-r)2 的余式——也即,除以 x2-2rx+r2——那么在 x=r 处 P(x) 的切线方程是 y=R(x),不论 r 是否是 P(x) 的根。

### 矩阵多项式除法计算方法 对于矩阵多项式除法,这一过程类似于标量多项式除法,但涉及到的是矩阵运算。假设存在两个矩阵多项式 \(A(s)\) 和 \(B(s)\),其中 \(A(s)\) 是被除数而 \(B(s)\) 是除数。 #### 定义与准备阶段 定义两个矩阵多项式如下: \[ A(s)=\sum_{i=0}^{n}{a_is^i}, B(s)=\sum_{j=0}^{m}{b_js^j}\] 这里 \(s\) 表示变量,\(a_i, b_j\) 分别代表对应的系数矩阵[^1]。 为了简化说明,假定 \(deg(A)> deg(B)\),即分子的最高次数大于分母的最大次幂;如果情况相反,则商为零向量,余项等于原多项式本身。 #### 计算步骤展示 通过不断减少被除式的阶数来逐步求解直到剩余部分小于除子的程度为止。具体操作可以描述为寻找合适的倍率使得每次相减后的结果尽可能低阶。 ```matlab function [Q,R]=mpolyldiv(A,B) % MPOLYL_DIV Matrix Polynomial Long Division. % % Q and R are the quotient and remainder of dividing matrix polynomials. if size(A,2)<size(B,2), error('The degree of dividend must be no less than that of divisor.'); end [n,m]=size(B); q=zeros(n,n); % Initialize Quotient as zero matrices with appropriate dimensions r=A; % Initially set Remainder equal to Dividend while ~isempty(r)&&~all(all(abs(triu(r,-(length(size(r))-1))))<eps*norm(B,'fro')) d=max(find(sum(diag(flipud(r))~=0))); % Find leading term index in current r c=r(d,:)/B(end,:); % Compute coefficient for this step q=q+c; % Accumulate into overall quotient r=r-diag(c)*B; % Subtract product from running total end R=r; ``` 上述代码实现了基本逻辑框架,在实际应用中可能还需要考虑更多细节处理如数值稳定性等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值