【数字信号处理】卷积和乘法系列2之AM调制、幅度谱和相位谱(含MATLAB代码) 案例2的应用——幅度调制(AM)能够预测卷积两个信号的结果是很有用的。一个明显的例子是 AM 调制(参见上一节 和下面的图 1),其中载波通过混合(混频)由基带信号调制。在频域中,这两个信号的频谱是卷积的。在图1中,显示了幅度调制(AM),左侧/右侧显示的是时间/频率域中的信号。第一行左侧显示音频消息信号sm(t)s_m(t)sm(t),在右侧显示其幅值频谱。...
【数字信号处理】卷积和乘法系列1之引言(含MATLAB代码) 引言要了解 DSP 的许多方面,以及使用傅里叶分析 (FA) 的其他应用,以下几点很重要了解卷积的过程要知道时间/频率域中的卷积/乘法 等价于 频域/时间域中的乘法/卷积会应用这些知识卷积是一个会引起很多混淆的过程,但使用采样数据(离散)比使用连续时间数据更容易理解。这是因为后者中的积分被求和代替了,并且可以使用简单的例子。卷积和乘法案例1...
【数字信号处理】希尔伯特变换系列3之解析信号(含MATLAB代码) 希尔伯特变换&解析信号你可能从未将DFT应用于复信号,因此你的数据将是实的,这样做的一个影响是DFT是对称的。在许多应用中,正频和负频分量都必须被处理——参见早期理想的DFT滤波,其中正频和负频分量都必须以相同的方式处理,以便滤波后的数据是实的(根据需要)。然而,你可能会问自己这是为什么呢?既然它们不包含唯一的信息,为什么负频率系数不能被丢弃。其实答案是可以,尽管这改变了信号的性质。实现这一点的一种方法是使用所谓的解析信号。这是一个没有负频率分量的复函数,它由原始信号及其希尔伯特变换组成。没有负
【数字信号处理】希尔伯特变换系列2之基于定向多普勒超声的胎儿心率监测(含MATLAB代码) 希尔伯特变换的应用希尔伯特变换在许多工程应用中都有使用,此处主要介绍两种用法。首先,它解决了多普勒超声胎儿心率监测器中出现的运动方向不明确的问题。第二,它与众所周知的解析信号联系起来了,在极坐标中,它能够找到信号的瞬时幅度和瞬时频率。基于定向多普勒超声的胎儿心率监测...
【数字信号处理】分贝的概念及其日常使用中常见的错误 分贝的基本概念首先,分贝的英文为decibel,单位为dB;其中bel表示声音计量单位(单位为Bel),并且有1dB=1/10Bel1\operatorname{dB}=1/10\operatorname{Bel}1dB=1/10Bel1Bel=10dB1\operatorname{Bel}=10\operatorname{dB}1Bel=10dBBel定义为某个比值相当于10的指数函数所对应的指数(orders of magnitude)。例如比值为10:1,则是1Bel;比值为100:1
【数字信号处理】希尔伯特变换系列1之相位处理(含MATLAB代码) 利用希尔伯特变换进行相位处理相位的频域处理在讨论“理想DFT滤波”时,我们注意到通常信号的相位将保持不变,这意味着不会发生由非线性相位引起的失真。然而,应该总是考虑相位响应(或者至少意识到它的存在)和幅度响应。对于所有频率,应该考虑幅度和相位。那么一个明显的问题是,在频域操纵信号的相位,而可能不改变振幅时,是否存在这样的情况。答案是肯定的。这里考虑的特别理想的相位处理方法是希尔伯特变换,它有很多应用,我们在这里探讨了其中的两个。希尔伯特变换希尔伯特变换所做的变换非常简单–尽管它的使用和对其的理解并
【数字信号处理】基于DFT的滤波系列6之维纳滤波理论推导与MATLAB仿真 维纳(Wiener)滤波引言罗伯特·维纳(Norbert Wiener)是一位对信号处理理论做出重大贡献的神童。维纳滤波是其中之一,维纳-辛钦(Wiener-Khinchin)定理是另一个表明信号的功率谱密度是其自相关函数的傅里叶变换的定理。他也是控制论的“鼻祖”。我们将看一下维纳滤波器的一个简单应用,该滤波器最初是为了解决使用有关飞行器的已知轨迹的信息来预测飞行器在给定时间的位置问题而开发的。这意味着防空或导弹射击可以相应地定向。在前几节基于DFT的滤波方法中,假设基础信号的有效频率的范围是已知的
【定时同步系列5】Farrow内插器结构原理和MATLAB实现 引言通常我们接收到的信号是过采样的x(mTs)x(mT_s)x(mTs),那么如何获取最佳采样点处的信号值x(kT)x(kT)x(kT)呢,这时候我们可以借助内插滤波器来实现。Farrow内插器原理及结构内插器本质为信号采样速率转换器,模型如下图假设接收端信号的采样周期为TsT_sTs,符号周期为TTT,则我们需要根据已知的采样点x(mTs)x(mT_s)x(mTs)来得到最佳时刻的采样值x(kT)x(kT)x(kT)。通过数/模转换器及滤波器hI(t)h_I(t)hI(t)后,得到y
【数字信号处理】基于DFT的滤波系列5之二维DFT滤波(含MATLAB代码) 五、二维DFT滤波前几节介绍的用于对时间序列滤波的原理也可用于对图像的滤波,采用二维傅里叶变换技术。下图为一幅图像的二维DFT(2D DFT)变换后的幅度值,该图像仅由一个恒定强度组成,因此它是0Hz分量——背景强度。在可视化 2D DFT 的结果时通常使用fftshift(),因此 DC 值是图片的中心。图1图1由恒定背景值组成的图像的 2D DFT。与DFT情况一样,图像的频域数据被移动,使得 DC 分量正好位于中心,此处表示直流分量的黄点是唯一不为零的分量。图2和3分别表示在水平和垂直
【数字信号处理】基于DFT的滤波系列4之加窗(含MATLAB代码) 四、基于DFT的(理想)滤波加窗以减少频谱泄漏在上面的例子中,整数次谐波被用来产生理想中的示例。这意味着一个完整的整数周期适合正在使用的样本数。一个明显的问题是,如果使用非整数周期数(以及谐波)会怎样?答案是远没有那么有效。在现实世界中,从这个意义上说,数据通常并不理想,这就是可以使用时域数据的窗口化来帮助改进频谱的地方,如下例所示。此示例使用Blackman窗,在 Matlab 中可使用blackman()函数——其他窗函数有Hamming和Hann窗。下图显示了由3.3次谐波的信号和11.6次
【数字信号处理】基于DFT的滤波系列3之插值滤波(含MATLAB代码) 四、基于DFT的(理想)滤波例2:一个“警告”“理想DFT滤波器”虽然简单、有效,但可能会导致意想不到的问题。在博客【数字信号处理】基于DFT的滤波系列2(含MATLAB代码)中,数据本身是理想的,由完美的谐波组成,这些谐波在频域中以单一频率理想地表示(无频谱泄漏),这是效果良好的原因之一。在下面这个示例中,考虑了宽带信号,就可能出现问题。这是受到一个真实示例的启发,当我们感到困惑时,用于减少 ECG 信号中 50Hz 噪声的滤波器似乎是在引入它。蓝线:需要的信号黑线:含有噪声(8次谐波)
【数字信号处理】基于DFT的滤波系列2(含MATLAB代码) 在该节的大部分内容中,我们将使用无量纲数字序列的数据。然而,对于现实世界的数据,这些数字将具有基础单位。在本节中,将解释时域和频域之间的联系。
【自适应盲均衡10】基于判决引导(Decision Directed)的多径衰落信道双模式盲均衡算法与MATLAB仿真(DD-CMA) 判决反馈均衡器(Decision Feedback Equalizer, DFE)虽然能够避免线性FIR均衡器的噪声增强,适用于具有深度谱零点的信道均衡;但是容易产生误收敛情况,针对该问题有人提出了预测判决反馈均衡器(PDFE),这个后续再说。
【自适应盲均衡9】基于判决反馈的多径衰落信道的盲均衡与MATLAB仿真(CMA-DFE) 关注公号【逆向通信猿】更精彩!!!关于均衡的基础知识,首先可参考本人博客LMMSE、Godard、CMA常模、Sato等算法在信道均衡中的应用理论与MATLAB仿真