Bw学习笔记

1           数据仓库的简介:数据仓库是一个面向主题的过程。

操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织。主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息的系统相关。

        数据仓库是面向在数据模型中已定义好的公司的主题。典型的主题领域包括:

销售

采购

物流管理

生产进度

项目管理

会计账目

管理费用

 

 

在线分析处理的基本概念

   OLAP是使分析人员、管理人员或执行人员能够从多角度对信息进行快速、一致、交互存取,从而获取对数据的更深入的了解的一类软件技术。OLAP的目标是满足决策支持或者满足多维环境下特定的查询和报表需求,他的技术核心是‘纬’这个概念。

 

‘纬’的概念

纬是人们观察客观世界的角度,是一种高层次的类型划分。维一般包含着层次关系,这种层次关系有时会相当复杂。通过把一个实体的多项重要的属性定义为多个维(dimension),使用户能对不同维上的数据进行比较。因此OLAP也可以说是多维数据分析工具的集合。

OLAP的基本多纬度分析

OLAP的基本多纬度分析操作有钻取、切片、和切块以及旋转等。

钻取:钻取是改变维的层次,变换分析的粒度.包括:上钻/下钻.上钻又称为:上卷或者移出下溯,是在某一纬度上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;而下钻相反.

切片和切块:切片和切块是在一部分维上选定值后,关心度量数据在剩余维上的分布.如果剩余的维只有两个,则是切片;如果有三个则是切块.

旋转:旋转是变换维的方向,即在表格中重新安排维的放置.(例如行列交互)

开发步骤之建模

数据仓库工作台介绍:建模

传统星状结构与BI星状结构的区别。

传统星状结构

Bi星状结构

事实

关键值

纬度属性

特性

描述属性

属性、文本

------

外部层级

纬度表

纬度表<不包含主数据>

纬度(等同于纬度表)

纬度表,sid<可选>,主数据表

传统星状结构与bi星状结构实现方法比较

 

传统星状结构

Bi星状结构

优点

由于只有事实表和相关纬度表的连接,表连接操作数量少,数据访问性能高。

自动产生的四位整型值(sid值、纬度id)的使用比通过长的字符--数字关键值能更快的访问数据;

得益于使用sid技术从纬度表中获取主数据,下列的建模特性可以实现

l         历史话的纬度

l         多语言能力

l         主数据跨信息立方体的使用

l         可以对关键值进行聚集,聚集的关键指标可以存储在他们自己的事实表中,查询的性能得到提高

缺点

在纬度表中存在冗余记录:

和事实表的历史化相比,纬度的历史化(即变化缓慢的纬度)在模型中不容易实现

 

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/16776852/viewspace-557594/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/16776852/viewspace-557594/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值