1 数据仓库的简介:数据仓库是一个面向主题的过程。
操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织。主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息的系统相关。
数据仓库是面向在数据模型中已定义好的公司的主题。典型的主题领域包括:
销售
采购
物流管理
生产进度
项目管理
会计账目
管理费用
在线分析处理的基本概念
OLAP是使分析人员、管理人员或执行人员能够从多角度对信息进行快速、一致、交互存取,从而获取对数据的更深入的了解的一类软件技术。OLAP的目标是满足决策支持或者满足多维环境下特定的查询和报表需求,他的技术核心是‘纬’这个概念。
‘纬’的概念
纬是人们观察客观世界的角度,是一种高层次的类型划分。维一般包含着层次关系,这种层次关系有时会相当复杂。通过把一个实体的多项重要的属性定义为多个维(dimension),使用户能对不同维上的数据进行比较。因此OLAP也可以说是多维数据分析工具的集合。
OLAP的基本多纬度分析
OLAP的基本多纬度分析操作有钻取、切片、和切块以及旋转等。
钻取:钻取是改变维的层次,变换分析的粒度.包括:上钻/下钻.上钻又称为:上卷或者移出下溯,是在某一纬度上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;而下钻相反.
切片和切块:切片和切块是在一部分维上选定值后,关心度量数据在剩余维上的分布.如果剩余的维只有两个,则是切片;如果有三个则是切块.
旋转:旋转是变换维的方向,即在表格中重新安排维的放置.(例如行列交互)
开发步骤之建模
数据仓库工作台介绍:建模
传统星状结构与BI星状结构的区别。
传统星状结构 | Bi星状结构 |
事实 | 关键值 |
纬度属性 | 特性 |
描述属性 | 属性、文本 |
------ | 外部层级 |
纬度表 | 纬度表<不包含主数据> |
纬度(等同于纬度表) | 纬度表,sid表<可选>,主数据表 |
传统星状结构与bi星状结构实现方法比较
| 传统星状结构 | Bi星状结构 |
优点 | 由于只有事实表和相关纬度表的连接,表连接操作数量少,数据访问性能高。 | 自动产生的四位整型值(sid值、纬度id值)的使用比通过长的字符--数字关键值能更快的访问数据; 得益于使用sid技术从纬度表中获取主数据,下列的建模特性可以实现 l 历史话的纬度 l 多语言能力 l 主数据跨信息立方体的使用 l 可以对关键值进行聚集,聚集的关键指标可以存储在他们自己的事实表中,查询的性能得到提高 |
缺点 | 在纬度表中存在冗余记录: 和事实表的历史化相比,纬度的历史化(即变化缓慢的纬度)在模型中不容易实现 |
|
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/16776852/viewspace-557594/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/16776852/viewspace-557594/