- 博客(25)
- 资源 (26)
- 收藏
- 关注
原创 【python】已知起始点经纬度坐标、偏转角、距离,求终点经纬度坐标
import mathdef get_end_lonlat(lon, lat, angle, distance): R = 6371.393 # 地球半径 AB = distance # 行进距离 (单位:km) ang = math.radians(angle) # 弧度转角度 lat0 = math.radians(lat) nAB = AB / R ab = R * math.sin(nAB / 2) * 2 ac = a.
2021-09-22 19:24:12 1465 3
原创 IMPALA(Importance Weighted Actor-Learner Architectures)
IMPALA(Importance Weighted Actor-Learner Architectures)策略梯度方法已成功地应用于许多复杂的强化学习问题。然而,政策梯度法存在方差大、收敛速度慢、探索效率低等问题。在这项工作中,我们引入了一个最大熵策略优化框架,它明确地鼓励参数探索,并表明这个框架可以简化为一个贝叶斯推理问题。在此基础上,我们提出了一种新的Stein变分策略梯度方法(SVPG),该方法结合了现有的策略梯度方法和一个排斥函数来生成一组多样化但表现良好的策略。SVPG对于初始化是健壮的,
2021-02-24 15:55:48 631 1
原创 DataParallel layers (multi-GPU, distributed) torch分布式函数
DataParallel layers (multi-GPU, distributed)DataParallelclass torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)在模块级实现数据并行。此容器通过在批处理维度中分块(其他对象将在每个设备上复制一次),在指定的设备上分割输入,从而并行化给定模块的应用程序。在正向传递过程中,模块被复制到每个设备上,每个副本处理输入的一部分。在向后传递过程中,每个副
2021-02-24 15:35:15 438
翻译 SEED RL:SCALABLE AND EFFICIENT DEEP-RL WITH ACCELERATED CENTRAL INFERENCE 翻译
SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference,该论文是谷歌2020年提出的IMPALA中Actor用CPU,Learner使用GPU存在的缺点:1、Actor前推在CPU,计算效率较低,当模型较大时,推理时间会延长,若是通过增加Actor的数量,则会增加成本,同时也将影响模型的收敛速度。2、资源的利用率较低,Actor需要在两个任务(环境step和网络推理)之间进行切换,而两个人物之间的计算需求是.
2021-02-24 15:22:38 645
原创 python -m spacy download en 提示服务器连接一直失败安装不上
解决方案:我在这一步的时候卡住了,运行不了转到https://github.com/explosion/spacy-models/tags,这个Git项目中包含了很多spacy的model,可自行选择一个对应的en和de,这里我选的是de_core_news_sm-2.2.5.tar.gz和en_core_web_sm-2.2.5.tar.gz,这里尽量让这两个包的版本一致,不然运行的时候对spacy的版本要求不一致会报错。/// 执行下面指令对en和de进行安装pip install de_cor
2020-12-30 18:03:06 2280
原创 离散数据作为神经网络的输入,我们该如何进行处理
离散数据归一化处理离散型数据处理方式one-hot(原因总结如下):使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间中的某个点;将离散的特征通过one-hot编码映射到欧式空间,是因为在回归、聚类、分类等机器学习算法中,特征之间距离的计算或者相似度的计算是非常重要的,而我们常用的距离或者相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理。比如,有一个离散型特征,
2020-12-21 11:06:16 4824 3
原创 腾讯星际争霸 TStarBots1解读
3.1 Our PySC2 Extension(PySC2扩展)SC2LE [16]是DeepMind和Blizzard联合提出的平台。 暴雪提供的游戏核心库提供了原始界面和功能映射界面。 DeepMind PySC2环境进一步将核心库包装在Python中,并完全公开了功能图界面。 目的是紧密模拟人为控制(例如,鼠标单击某处或按下某些键盘按钮),由于SC2内部结构的复杂性,它会导致大量操作。 因此,这给决策系统带来了不小的困难。 而且,这样的“玩家级”建模对于“单位级”建模是不便的...
2020-07-22 14:49:34 1872
原创 GYM环境解读
GYM调用GYM环境:import gym通过gym.make(env_name)对环境进行初始化进入gym/envs/registraion.py,调用make()–>EnvRegistry.make(),通过函数spec(path)来对环境id进行匹配,path = env_name = id,调用match = env_id_re.search(id)[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ye3RCaFM-1592555650345)(C:\U
2020-06-19 16:35:30 7180 6
原创 《Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning》译文
原文链接https://arxiv.org/pdf/1709.10082v1.pdfTowards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning原文:Abstract— Developing a safe and efficient collisio...
2020-04-09 19:19:24 2171
原创 解决keras模型保存问题(避免系统崩溃,模型训练无效),并且可以解决训练越来越慢的问题
首先贴出来训练部分的代码: def train(self, train_generator, validation_generator, pre_model_path=None): ''' :param train_generator: 训练集 :param validation_generator: 测试集 :param...
2020-04-08 19:19:17 2504 3
原创 python list 取部分值
代码解读:list1 = [1,2,3,4,5,6,7,8,9,0]若是想取前几项,如:前5项 该列表表示的是正向索引(index)0 1 2 3 4 5 6 7 8 9 ...
2019-05-30 17:31:03 34520
原创 MacOS搭建openai环境
首先是安装Homebrew:https://brew.sh/index_zh-cn输入指令:/usr/bin/ruby -e “$(curl -fsSLhttps://raw.githubusercontent.com/Homebrew/install/master/install)”需要注意的是password输入的是开机密码不是id密码。完成之后输入brew -v来查看是否安装...
2019-04-27 09:44:50 2605
原创 Pendulum_DDPG代码走读之pendulum.py
Pendulum_DDPG.py中引入:# 初始化环境状态state = env.reset()# 获取当前时刻的状态state_next, reward, terminal, _ = env.step(action)# 其中env.step(action)是进入 time_limit.py的step函数 再进入 pendulum.py的step函数其中time_limit....
2019-01-20 11:24:11 1472
原创 tf.contrib.rnn
Class tf.contrib.rnn.BasicLSTMCell Class tf.nn.rnn_cell.BasicLSTMCell 其实两个是等价的,只是版本的问题,表示定义一个LSTM结构,所使用的变量会自动进行声明。Args:num_units: int, The number of units in the LSTM cell.神经元数量 forget_bias: flo...
2019-01-20 11:22:45 692
原创 Ubuntu wifinetwork无法设置的问题
直接运行:sudo /etc/init.d/NetworkManager/NetworkManager.conf完美解决!
2018-09-27 18:43:13 767
原创 Python gRPC 环境搭建及测试
参考文章:https://www.jianshu.com/p/14e6f5217f40(修改了部分bug--两个main函数,作者的写法只适用于所有文件夹在同一目录的情况,若是两个不同的文件夹,运行会出错。)小白一枚,啥也不懂,直接上手,虽然不知道我在干什么,但是我运行成功了,手动哈哈哈。。。安装:gRPC 的安装:$ pip install grpcio安装 ProtoBu...
2018-09-21 17:01:01 6511 7
原创 tensorflow GPU版安装(win10系统,anaconda3.4.2,python3.5, GTX1050,CUDA9.0
tensorflow GPU版安装(win10系统,anaconda3.4.2,python3.5, CUDA9.0.176_win10,cudnn-9.0-windows10-x64-v7,GTX1050 Ti)参考博客 https://blog.csdn.net/gyp2448565528/article/details/79451212安装完anaconda,配置环境:系统变量...
2018-09-20 19:44:07 958
原创 spark python安装配置 (初学)
参考博客 https://blog.csdn.net/tyhj_sf/article/details/81907051需要:jdk10.0、spark2.3.1、Hadoop2.7.7(与spark对应的版本) JDK下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk10-downloads-4416644....
2018-09-04 14:04:22 3786 2
原创 深度学习在数据中的应用---循环神经网络
第一次接触循环神经网络。。。。。。循环神经网络是针对序列数据建模的深度学习模型,在自然语言处理、语音识别等领域中应用较为广泛。(以前接触的基本上都是图像方面的东西) 先总结一下文章的内容,下次主要介绍一下循环神经网络的工作机理: 看完文章得到的结果就是:CNN比较适用于图像特征的挖掘,RNN比较适用于序列数据的处理。由于深度学习模型需要大数据的支撑,可训练的数据较少时可以通...
2018-08-22 14:55:35 700
原创 MatConvnet 初步学习(CPU&GPU)
本次配置主要参考http://blog.csdn.NET/listening5/article/details/50240147进行配置,其中遇到的问题主要参考http://blog.csdn.net/wd1603926823/article/details/52370278,进行解决。提示:matconvnet不支持win32位系统,学习的话可以在自己的电脑上试一下CPU的,因为我的笔记本的...
2018-08-22 14:39:10 585
原创 win7+64位+Java学习基本软件安装+环境配置+eclipse(IDE)
本篇博客主要是介绍了win7+64位环境下,开始学习Java的准备工具、JDK环境配置,以及介绍了所使用的IDE
2017-12-18 17:46:15 7045
转载 环境配置说明(无CUDA,caffe在CPU下运行)caffe+Ubuntu14.0.4 64bit
环境配置说明(无CUDA,caffe在CPU下运行)caffe+Ubuntu14.0.4 64bit
2017-03-09 10:36:14 1000
基于tensorflow的简单GAN算法.rar
2019-12-31
强化学习算法汇总.rar
2019-12-31
ckpt_2_pb.rar
2019-10-10
十三种图像特征提取代码合集(吐血整理)
2019-07-04
bicnet_详细代码.rar
2019-05-30
CNN+DDPG代码,主要实现了倒立摆的控制
2019-05-30
数据挖掘与分析
2018-08-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人