SIFT和SURF,及OpenCV实现

  • 共同点:

SIFT/SURF为了实现不同图像中相同场景的匹配,主要包括三个步骤:

1、尺度空间的建立;

2、特征点的提取;

OpenCV中:FeatureDetector,具体实现类有

    class FastFeatureDetector (角点检测)

    class GoodFeaturesToTrackDetector

    class MserFeatureDetector(最大稳定区域极值提取)

    class StarFeatureDetector

    class SiftFeatureDetector

    class SurfFeatureDetector


3、利用特征点周围邻域的信息生成特征描述子;DescriptorExtractor,具体实现类

    class SiftDescriptorExtractor

    class SurfDescriptorExtractor

    class CalonderDescriptorExtractor

    class BriefDescriptorExtractor

    class OpponentColorDescriptorExtractor


4、特征点匹配。DescriptorMatcher, DMatch ,具体实现类

   class BruteForceMatcher(暴力匹配方法)

   class FlannBasedMatcher

可参照:http://blog.csdn.net/wanglang3081/article/details/17791121

http://www.opencv.org.cn/opencvdoc/2.3.2/html/modules/features2d/doc/features2d.html


        如果两幅图像中的物体一般只是旋转和缩放的关系,加上图像的亮度及对比度的不同,要在这些条件下要实现物体之间的匹配,SIFT算法的先驱及其发明者想到只要找到多于三对物体间的匹配点就可以通过射影几何的理论建立它们的一一对应。

        如何找到这样的匹配点呢?SIFT/SURF作者的想法是首先找到图像中的一些“稳定点”,这些点是一些特殊的点,不会因为视角的改变、光照的变化、噪音的干扰而消失,比如角点、边缘点、暗区域的亮点以及亮区域的暗点。这样如果两幅图像中有相同的景物,那么这些稳定点就会在两幅图像的相同景物上同时出现,这样就能实现匹配。因此,SIFT/SURF算法的基础是稳定点

        SIFT/SURF提取的稳定点,首先都要求是局部极值。但是,当两个物体的大小比例不一样时,大图像的局部极值点在小图像的对应位置上有可能不是极值点。于是SIFT/SURF都采用图像金字塔的方法,每一个截面与原图像相似,这样两个金字塔中就有可能包含大小最近似的两个截面了。

        这样找到的特征点会比较多,经过一些处理后滤掉一些相对不稳定的点。

        接下来如何去匹配相同物体上对应的点呢?SIFT/SURF的作者都想到以特征点为中心,在周围邻域内统计特征,将特征附加到稳定点上,生成特征描述子。在遇到旋转的情况下,作者们都决定找出一个主方向,然后以这个方向为参考坐标进行后面的特征统计,就解决了旋转的问题。


 

  • 共同的大问题有以下几个:

1、为什么选用高斯金字塔来作特征提取?

      为什么是DOG的金字塔?因为它接近LOG,而LOG的极值点提供了最稳定的特征,而且DOG方便计算(只要做减法。)

      为什么LOG的极值点提供的特征最稳定。

     直观理解:特征明显的点经过不同尺度的高斯滤波器进行滤波后,差别较大,所以用到的是DOG。

 

2、Hessian矩阵为什么能用来筛选极值点?

      SIFT先利用非极大抑制,再用到Hessian矩阵进行滤除。SURF先用Hessian矩阵,再进行非极大抑制。SURF的顺序可以加快筛选速度么?(Hessian矩阵滤除的点更多?)

      至于SURF先用Hessian矩阵,再进行非极大抑制的原因,是不管先极大值抑制还是判断Hessian矩阵的行列式,金字塔上的点的行列式都是要计算出来的。先判断是否大于0只要进行1次判断,而判断是否是极大值点或者极小值点要与周围26个点比较,只比较1次肯定快。

      而在SIFT中,构建的高斯金字塔只有一座(不想SURF是有3座),要进行非极大抑制可以直接用金字塔的结果进行比较。而如果计算Hessian矩阵的行列式,还要再计算Dxx、Dxy、Dyy。因此先进行非极大抑制。这两个步骤的先后与SIFT/SURF的实际计算情况有关的,都是当前算法下的最佳顺序,而不是说哪种先计算一定更好。

3、为什么采用梯度特征作为局部不变特征?

      这与人的视觉神经相关。采用梯度作为描述子的原因是,人的视觉皮层上的神经元对特定方向和空间频率的梯度相应很敏感,经过SIFT作者的一些实验验证,用梯度的方法进行匹配效果很好。

4、为什么可以采用某些特征点的局部不变特征进行整幅图像的匹配?

     参考: http://apps.hi.baidu.com/share/detail/32318290

    从直观的人类视觉印象来看,人类视觉对物体的描述也是局部化的,基于局部不变特征的图像识别方法十分接近于人类视觉机理,通过局部化的特征组合,形成对目标物体的整体印象,这就为局部不变特征提取方法提供了生物学上的解释,因此局部不变特征也得到了广泛应用。

      还有:

      图像中的每个局部区域的重要性和影响范围并非同等重要,即特征不是同等显著的,其主要理论来源是Marr的计算机视觉理论和Treisman的特征整合理论,一般也称为“原子论”。该理论认为视觉的过程开始于对物体的特征性质和简单组成部分的分析,是从局部性质到大范围性质。

      SIFT/SURF都是对特征点的局部区域的描述,这些特征点应该是影响重要的点,对这些点的分析更加重要。所以在局部不变特征的提取和描述时也遵循与人眼视觉注意选择原理相类似的机制,所以SIFT/SURF用于匹配有效果。


  • 不同点的比较:

从博客上看到一个总结,我修改了一些内容。大家可以参看以下链接:

http://blog.csdn.net/ijuliet/archive/2009/10/07/4640624.aspx

 

SIFT

SURF

尺度空间

DOG与不同尺度的图片卷积

不同尺度的box filters与原图片卷积

特征点检测

先进行非极大抑制,再去除低对比度的点。再通过Hessian矩阵去除边缘的点

先利用Hessian矩阵确定候选点,然后进行非极大抑制

方向

在正方形区域内统计梯度的幅值的直方图,找max对应的方向。可以有多个方向。

在圆形区域内,计算各个扇形范围内x、y方向的haar小波响应,找模最大的扇形方向

特征描述子

16*16的采样点划分为4*4的区域,计算每个区域的采样点的梯度方向和幅值,统计成8bin直方图,一共4*4*8=128维

(2013.5.9 note: 不一定要是16 × 16,区域也可以不用是 4 × 4)

20*20s的区域划分为4*4的子区域,每个子区域找5*5个采样点,计算采样点的haar小波响应,记录∑dx,∑dy,∑|dx|,∑|dy|,一共4*4*4=64维

        SURF—金字塔仅仅是用来做特征点的检测。在计算描述子的时候,haar小波响应是计算在原图像(利用积分图)。而SIFT是计算在高斯金字塔上(注意不是高斯差分金字塔。)

  • 性能的比较:

        论文:A comparison of SIFT, PCA-SIFT and SURF 对三种方法给出了性能上的比较,源图片来源于Graffiti dataset,对原图像进行尺度、旋转、模糊、亮度变化、仿射变换等变化后,再与原图像进行匹配,统计匹配的效果。效果以可重复出现性为评价指标。

        比较的结果如下:

method

Time

Scale

Rotation

Blur

Illumination

Affine

Sift

common

best

best

common

common

good

Pca-sift

good

good

good

best

good

best

Surf 

best

common

common

good

best

good

 

 

 

 

 

 

   

        由此可见,SIFT在尺度和旋转变换的情况下效果最好,SURF在亮度变化下匹配效果最好,在模糊方面优于SIFT,而尺度和旋转的变化不及SIFT,旋转不变上比SIFT差很多。速度上看,SURF是SIFT速度的3倍。

 

OpenCV算法实现

<pre name="code" class="cpp">/**
 * @file SURF_descriptor
 * @brief SURF detector + descritpor + BruteForce Matcher + drawing matches with OpenCV functions
 * @author A. Huaman
 */

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace cv;

void readme();

/**
 * @function main
 * @brief Main function
 */
int main( int argc, char** argv )
{
  if( argc != 3 )
  { return -1; }

  Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
  Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
  
  if( !img_1.data || !img_2.data )
  { return -1; }

  //-- Step 1: Detect the keypoints using SURF Detector
  int minHessian = 400;

  SurfFeatureDetector detector( minHessian );

  std::vector<KeyPoint> keypoints_1, keypoints_2;

  detector.detect( img_1, keypoints_1 );
  detector.detect( img_2, keypoints_2 );

  //-- Step 2: Calculate descriptors (feature vectors)
  SurfDescriptorExtractor extractor;

  Mat descriptors_1, descriptors_2;

  extractor.compute( img_1, keypoints_1, descriptors_1 );
  extractor.compute( img_2, keypoints_2, descriptors_2 );

//-- Step 3: Matching descriptor vectors using FLANN matcher
  FlannBasedMatcher matcher;
  std::vector< DMatch > matches;
  matcher.match( descriptors_1, descriptors_2, matches );


  double max_dist = 0; double min_dist = 100;

  //-- Quick calculation of max and min distances between keypoints
  for( int i = 0; i < descriptors_1.rows; i++ )
  { double dist = matches[i].distance;
    if( dist < min_dist ) min_dist = dist;
    if( dist > max_dist ) max_dist = dist;
  }


  printf("-- Max dist : %f \n", max_dist );
  printf("-- Min dist : %f \n", min_dist );
  
  //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
  //-- PS.- radiusMatch can also be used here.

  std::vector< DMatch > good_matches;

  for( int i = 0; i < descriptors_1.rows; i++ )
  { if( matches[i].distance < 2*min_dist )
    { good_matches.push_back( matches[i]); }
  }  

<pre name="code" class="cpp">  //-- Draw only "good" matches
  Mat img_matches;
  drawMatches( img_1, keypoints_1, img_2, keypoints_2, 
               good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), 
               vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); 

  //-- Show detected matches
  imshow( "Good Matches", img_matches );
//-- Localize the object from img_1 in img_2 
  std::vector<Point2f> obj;
  std::vector<Point2f> scene;

  for( int i = 0; i < good_matches.size(); i++ )
  {
    //-- Get the keypoints from the good matches
    obj.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
    scene.push_back( keypoints_2[ good_matches[i].trainIdx ].pt ); 
  }

  Mat H = findHomography( obj, scene, CV_RANSAC );

  //-- Get the corners from the image_1 ( the object to be "detected" )
  Point2f obj_corners[4] = { cvPoint(0,0), cvPoint( img_1.cols, 0 ), cvPoint( img_1.cols, img_1.rows ), cvPoint( 0, img_1.rows ) };
  Point scene_corners[4];


  //-- Map these corners in the scene ( image_2)
  for( int i = 0; i < 4; i++ )
  {
    double x = obj_corners[i].x; 
    double y = obj_corners[i].y;


    double Z = 1./( H.at<double>(2,0)*x + H.at<double>(2,1)*y + H.at<double>(2,2) );
    double X = ( H.at<double>(0,0)*x + H.at<double>(0,1)*y + H.at<double>(0,2) )*Z;
    double Y = ( H.at<double>(1,0)*x + H.at<double>(1,1)*y + H.at<double>(1,2) )*Z;
    scene_corners[i] = cvPoint( cvRound(X) + img_1.cols, cvRound(Y) );
  }  
   
  //-- Draw lines between the corners (the mapped object in the scene - image_2 )
  line( img_matches, scene_corners[0], scene_corners[1], Scalar(0, 255, 0), 2 );
  line( img_matches, scene_corners[1], scene_corners[2], Scalar( 0, 255, 0), 2 );
  line( img_matches, scene_corners[2], scene_corners[3], Scalar( 0, 255, 0), 2 );
  line( img_matches, scene_corners[3], scene_corners[0], Scalar( 0, 255, 0), 2 );


  //-- Show detected matches
  imshow( "Good Matches & Object detection", img_matches );
 

  waitKey(0);
  return(0);
}

/**
 * @function readme
 */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }


 

参考:http://blog.csdn.net/yang_xian521/article/details/6901762


  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值