给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。
说明: 叶子节点是指没有子节点的节点。
示例:
给定如下二叉树,以及目标和 sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
这是个树的遍历,DFS(深度优先遍历)
每条DFS到头后,计算节点和与目标值是否相等,
全部遍历的话会很耗时,需要进行剪枝操作以节约时间,即
假如有一条满足条件了,其他路径便不再进行遍历了
代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool hasPathSum(TreeNode* root, int sum) {
if(root == nullptr)
return false;
int res=0;
return HasPathSum(root,res,sum);
}
//保证node不为nullptr
bool HasPathSum(TreeNode* node, int sum, int aim)
{
//计算当前节点的值
sum += node->val;
//将当前节点的值传递下去,看左子树的线路是否OK
if(node->left && HasPathSum(node->left, sum, aim))
{
return true;
}
//否则执行右子树线路是否OK
else if(node->right && HasPathSum(node->right,sum,aim))
{
return true;
}
//如果当前节点就是叶子节点,那么判断当前值是否
if(node->left==nullptr && node->right==nullptr && sum==aim)
{
return true;
}
else
{
return false;
}
}
};