数据结构-二叉搜索树(Java实现)

1. 概念

二叉搜索树也叫做二叉排序树,如果中序遍历,这棵二叉搜索树的结果就是有序的,它是具备以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有结点的值都小于根节点的值
  • 若它的右子树不为空,则右子树上所有结点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树

{5,3,4,1,7,8,2,6,0,9};
 

二叉搜索树的结构代码

    static class TreeNode {  //内部类
        public int val;
        public TreeNode left;
        public TreeNode right;

        public TreeNode(int val) {  //构造方法
            this.val = val;
        }
    }

    public TreeNode root;

 2. 操作-查找

 

    //查找
    public boolean search(int val) {
        TreeNode cur = root;

        //创建一个cur在root位置,如果比cur大就走到右边,反之左边,直到cur等于空跳出循环

        while (cur != null) {
            if (cur.val < val) {
                //往右树查找
                cur = cur.right;
            } else if (cur.val > val) {
                //往左树查找
                cur = cur.left;
            } else {
                //找到了
                return true;
            }
        }
        //没有则返回false
        return false;
    }

    

(1) 如果树为空树,即根 == null,直接插入

(2)如果树不是空树,按照查找逻辑确定插入位置,插入新结点 

    //插入
    //要记录上一个的结点
    public void insert(int val) {
        if (root == null) {  //第一个结点的处理
            root = new TreeNode(val);
            return;
        }
        TreeNode cur = root;
        TreeNode parent = null;

        while (cur != null) {  //cur走到空的地方,证明走到了,然后通过cur的父节点parent来判断插入左边还是右边
            if (cur.val < val) {
                parent = cur;  //先走到cur位置,cur再动
                cur = cur.right;
            } else if (cur.val > val) {
                parent = cur;
                cur = cur.left;
            } else {
                return;
            }
        }
        //new一个要插入的结点,把val放进去构造好
        TreeNode node = new TreeNode(val);
        //插入必须是叶子结点,所以cur到达null
        if (parent.val < val) {
            parent.right = node;
        } else {
            parent.left = node;
        }
    }

3. 操作-删除⭐⭐⭐⭐⭐

分情况讨论

设待删除结点为cur,待删除结点的双亲结点为parent

1. cur.left == null

  1. cur 是root, 则 root = cur.right

 

        2. cur 不是 root, cur 是 parent.left, 则 parent.left = cur.right 

        3. cur 不是 root, cur 是 parent.right = cur.right 

2.  cur.right == null

        1. cur 是 root, 则 root = cur.left

         2. cur 不是 root, cur 是 parent.left, 则 parent.left = cur.left

        3. cur 不是 root, cur 是 parent.right, 则 parent.right = cur.left

3. cur.left != null && cur.right != null   (难点)

需要使用替换法进行删除,即寻找所要删除结点的左子树的最大值或者右子树的最小值,对所要删除结点进行覆盖,这样就能达到删除效果

 

    //删除操作
    public void remove(int val) {
        TreeNode cur = root;  //从根节点开始找
        TreeNode parent = null;
        while(cur != null) {
            if(cur.val < val) {  //说明要删除的结点在cur的右边
                parent = cur;  //parent走到cur当前位置
                cur = cur.right;  //cur往右边走
            }else if(cur.val > val) {  说明要删除的结点在cur的左边
                parent = cur;  //parent走到cur当前位置
                cur = cur.left;  //cur往左边走
            }else {  //找到要删除的结点
                removeNode(parent,cur);
                return;
            }
        }
    }
    private void removeNode(TreeNode parent,TreeNode cur){
        if(cur.left == null) {  //左边等于空
            if (cur == null) {
                root = cur.right;
            } else if (cur == parent.left) {
                parent.left = cur.right;
            } else {
                parent.right = cur.right;
            }
        } else if (cur.right == null) {  //右边等于空
            if(cur == null) {
                root = cur.left;
            } else if (cur == parent.left) {
                parent.left = cur.left;
            }else {
                parent.right = cur.left;
            }
        }else { //左右都不为空
            TreeNode t = cur.right;  //寻找所要删除结点右子树的最小值
            TreeNode tp = cur;
            while(t.left != null) {  //等于null说明找到最小值了
                tp = t;  //父亲结点先走到cur位置
                t = t.left;  //往左边寻找最小值
            }
            cur.val = t.val;  //进行替换
            if (tp.left == t.left) {  //删除结点,两种情况
                tp.left = t.right;
            } else {
                tp.right = t.right;
            }
        }
    }
}

  • 17
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值