自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(39)
  • 收藏
  • 关注

原创 5. 总结篇:混合集成算法的知识体系与进阶路径

混合集成算法的魅力在于 “灵活性”—— 没有 “唯一正确” 的模型结构,只有 “适配场景” 的解决方案。重视理论,但别被理论束缚:理解 “偏差 - 方差权衡” 等基础理论,但在实践中可根据业务调整(如大促场景中,可临时提高行为特征的权重);从小项目开始,积累实战经验:不要一开始就挑战复杂场景(如自动驾驶),先从 “电商推荐”“用户 churn 预测” 等小项目入手,逐步积累优化与部署经验;关注业务价值,而非技术炫技。

2025-10-25 10:05:54 725

原创 4. 落地篇:攻克3大核心痛点,实现混合集成模型工业化部署

性能优化闭环:通过 “过拟合解决(数据增强 + 正则化)→ 维度爆炸解决(特征筛选 + PCA)→ 推理延迟解决(模型压缩 + 并行推理)”,实现 “训练 AUC 0.89→线上 AUC 0.87,推理时间 50ms→8ms” 的目标,既保证性能,又满足实时性需求;技术落地闭环:从 “代码实现(模型搭建)→ 容器化(Docker)→ 服务化(FastAPI)→ 监控维护(Prometheus)”,覆盖工业化部署的全环节,避免 “代码能跑但无法上线” 的问题;业务适配闭环。

2025-10-21 12:16:26 1002

原创 3. 改进篇:3大方向突破混合集成模型性能瓶颈

上一篇搭建的 “CNN+XGBoost + 逻辑回归” 模型虽能满足基础需求,但在复杂场景下仍有明显瓶颈:逻辑回归融合的权重是 “全局固定” 的,无法适配不同样本的特征差异;基模型训练相互独立,未利用彼此的优势信息;模型结构是静态的,难以应对数据分布变化。基于近 3 年混合集成领域的研究共性(如混合融合与集成技术的结合),本文从三个方向,提供具体改进思路与代码实现,帮你将模型 AUC 再提升 5%-10%。

2025-10-21 12:14:53 617

原创 2. 实战篇:手把手搭建电商购买意愿预测混合集成模型

上一篇我们理清了混合集成的理论框架,这一篇直接进入 “真刀真枪” 的实战环节。本次实战选择场景 —— 这是电商平台的核心需求,数据包含 “用户行为日志(结构化)+ 商品图片(非结构化)”,正好适配混合集成 “多模态数据处理” 的优势。我们将搭建 “CNN(处理图片)+XGBoost(处理日志)+ 逻辑回归(融合结果)” 的混合模型,全程附代码 + 注释,新手也能跟着做。

2025-10-20 22:19:09 638

原创 1. 入门篇:一文读懂混合集成算法的“前世今生”

混合集成算法:破解单一算法瓶颈的利器 混合集成算法通过组合不同类型的基础算法(如决策树+SVM+神经网络),实现“1+1>2”的性能突破。其核心类型包括串联式(分步处理)、并联式(并行融合)和嵌套式(算法嵌套),适用于分类、回归及优化任务。关键理论支撑是偏差-方差权衡(平衡精度与稳定性)和多样性增益(错误互补)。与传统集成(如随机森林)不同,混合集成能融合多模态数据,适配复杂场景。落地前需明确任务目标,并统一数据预处理(格式、缺失值、标准化)。混合集成通过多算法协作,显著提升模型的泛化能力和鲁棒性。

2025-10-20 22:17:06 358

原创 Bagging家族“内卷史”:随机森林只是入门,极端随机树把“随机性”玩到了极致

从 “数据随机” 到 “特征 + 分裂点随机”,Bagging 变体如何一步步突破性能上限?

2025-10-08 15:11:50 1300

原创 别再瞎调参!随机森林参数调优的“黄金流程”,性能直接翻倍

摘要:随机森林参数调优黄金法则 本文系统介绍了随机森林模型的参数优化方法,将核心参数分为结构参数(控制模型复杂度)和随机参数(提升多样性)两类,并提出了4步调优流程:1)固定基础参数;2)优先优化结构参数;3)调整随机参数;4)确定最终树数量。同时指出了三大常见误区:盲目增加树数量、忽略特征预处理和单一评价指标,并推荐使用网格搜索等自动化工具。文章强调调参应遵循"先解决过拟合,再提升多样性"的原则,通过结构化方法显著提升模型性能。

2025-10-08 15:08:09 1580

原创 为什么一堆「弱模型」能吊打「学霸模型」?Bagging并行集成的底层逻辑全解析

搞懂偏差 - 方差分解,你就掌握了 Bagging 的「抗过拟合密码」

2025-10-08 15:06:46 873

原创 【从理论到实战】堆叠集成(Stacking)保姆级教程④:7个进阶技巧+工程化落地,Kaggle大神都在用

多样性优先于性能”:与其用 3 个高精度但同质化的梯度树模型,不如用 1 个梯度树 + 1 个线性模型 + 1 个核方法,多样性带来的性能提升远大于单模型精度提升;“元学习器越简单越好”:90% 的场景下,带正则的逻辑回归比复杂的 XGBoost 或神经网络更适合做元学习器,复杂元学习器往往是 “过拟合的开始”;“交叉验证必须分层”:在不平衡分类任务中,不用 Stratified K-Fold,等于直接放弃少数类的预测能力,元特征会完全偏向多数类;“别迷信多级堆叠”

2025-10-07 12:09:15 1248

原创 【从理论到实战】堆叠集成(Stacking)保姆级教程③:300行Python代码实战,信用卡欺诈检测准确率提升10%

我们使用的 “信用卡欺诈检测数据集” 包含 284,807 条交易记录,每条记录有 31 个特征:特征 V1~V28:经过 PCA 降维处理的匿名特征(因隐私保护,原始特征未公开);特征 Amount:交易金额;特征 Time:交易时间(从首笔交易开始的秒数);标签 Class:1 表示欺诈交易,0 表示正常交易(类别比例约 1:578)。获取方式(需注册 Kaggle 账号);国内用户可通过阿里云镜像等平台获取(搜索 “信用卡欺诈检测数据集”)。下载后将数据集保存为,放在代码同一目录下。

2025-10-07 12:05:28 772

原创 【从理论到实战】堆叠集成(Stacking)保姆级教程②:5个关键细节+避坑指南,新手也能少走3年弯路

文章摘要 本文深入探讨了堆叠集成(Stacking)的5个关键实践细节和避坑指南。核心要点包括:1)基学习器选择应注重多样性而非单一性能,建议3-5个互补模型组合;2)必须使用交叉验证生成元特征以避免过拟合;3)元学习器优先选择简单模型如逻辑回归;4)原始特征需谨慎加入,建议通过特征重要性筛选;5)过拟合防控需从模型复杂度、独立验证和早停策略三方面着手。这些实践建议能帮助开发者有效提升堆叠集成的效果,避免常见陷阱。

2025-10-06 14:12:15 1060

原创 【从理论到实战】堆叠集成(Stacking)保姆级教程①:一篇看懂核心原理,告别‘模型融合’迷茫

堆叠集成(Stacking)是一种通过组合多个不同类型模型来提升预测性能的集成方法。它采用三层架构:基学习器层(多样化模型)、元特征层(整合预测结果)和元学习器层(最终决策)。相比其他集成方法,堆叠集成的优势在于模型多样性和智能整合能力,特别适合高精度需求、单模型瓶颈和多特征互补的场景。但不适用于实时性要求高或数据量小的情况。本文为理论篇,后续将推出技术细节和实战内容。

2025-10-06 14:11:23 724

原创 2025年实用大模型工具清单

2025年实用大模型工具清单精选18款国内可用、中文适配的AI工具,覆盖通用助手、内容创作和编程辅助三大场景。通用类包括DeepSeek(128k长文本处理)、通义千问(多模态交互)等;创作类提供Kimi(学术论文辅助)、妙画(AI绘图)、火山引擎Pika(短视频生成)等工具;编程类推荐通义灵码(代码调试)等开发辅助工具。清单详细标注每款工具的核心功能、2025年更新内容、免费权益及适用场景,所有链接经实测可用,适合技术学习和工作参考。

2025-10-05 15:23:05 949

原创 XGBoost工业级痛点解决:样本不平衡+大数据优化+部署落地

XGBoost 支持自定义损失函数,通过修改 “错误惩罚系数”,让模型对少数类错误的惩罚远大于多数类错误。例如:在逻辑损失中,少数类预测错误时的损失乘以 10,多数类预测错误时的损失乘以 1。代码实现(自定义二分类损失)"""自定义损失函数:少数类错误惩罚系数为10,多数类为1preds:模型预测的概率(未经过sigmoid)dtrain:DMatrix数据,包含真实标签"""labels = dtrain.get\_label() # 获取真实标签(0/1)

2025-10-05 14:43:58 880

原创 XGBoost实战:从0手写核心逻辑到工业级项目落地(附参数调优指南)

降低学习率:将learning_rate从 0.1 降至 0.05 或 0.01,同时增加n_estimators(如从 100 增至 300 或 500);启用早停机制:early_stopping_rounds=10,避免过多迭代导致过拟合;例:学习率调至 0.05、n_estimators=300,乳腺癌数据集测试集准确率从 98.25% 升至 99.12%。优先用官方库而非手动实现:官方库优化了并行计算、内存占用,支持早停、特征重要性等实用功能,手动实现仅用于理解原理;必用早停机制。

2025-10-04 09:25:41 1043 1

原创 深挖XGBoost数学内核:从目标函数到分裂逻辑,看懂它为什么这么强

LϕLϕ:整体目标函数,ϕ\phiϕ代表模型参数(所有决策树的结构和叶子权重);lyiyitlyi​y​it​:第iii个样本的训练损失yiy_iyi​是真实标签,yity​it​是第ttt轮迭代后的预测值;ΩfkΩfk​:第kkk棵决策树的正则化项,用于控制树的复杂度;ttt:当前迭代轮次(即已训练的决策树数量),XGBoost 通过 “逐步添加树” 优化目标函数。yi00。

2025-10-04 09:24:50 547

原创 一文入门XGBoost:为什么它是工业界的「集成学习扛把子」?

多分类:通过 “softmax” 输出类别概率,轻松搞定手写数字识别、图像分类等任务;排序任务:内置 “排序损失函数”(如 LambdaRank),是推荐系统中 “用户商品排序” 的常用工具;自定义损失:支持用户传入自己的损失函数(只要能求一阶、二阶导数),满足个性化需求(如金融场景的 “分位数损失”)。

2025-10-03 16:50:59 706 1

原创 Adaboost进阶:与主流集成算法对比+工业级案例+未来方向

根据用户近 30 天行为定义标签:0(不流失):近 30 天登录≥10 次,或有≥1 次购买;1(轻度流失):近 30 天登录 3-9 次,无购买;2(重度流失):近 30 天登录≤2 次,无购买。

2025-10-03 16:49:50 1108

原创 Adaboost实战:从0手写代码到sklearn落地,附数据集验证与问题排查

弱分类器 “弱而精”:优先选择简单的弱分类器(如决策 Stump、线性模型),避免用复杂模型导致过拟合,这是 Adaboost 的核心设计思想;参数 “小学习率 + 适中迭代”:学习率通常设为 0.05-0.2,迭代次数通过学习曲线确定,平衡模型精度与泛化能力;预处理 “先除异常再训练”:Adaboost 对异常值敏感,务必在训练前用统计方法识别并处理异常值,避免模型被干扰。

2025-10-02 10:19:50 913

原创 深挖Adaboost数学原理:从损失函数到公式推导,看懂为什么它能变强

对于二分类问题(标签y∈1−1y∈1−1),Adaboost 的整体强分类器为Hxsign∑t1TαthtxHxsign∑t1T​αt​ht​xLHExyexp⁡−y⋅HxLHExy​exp−y⋅Hx))其中E⋅E⋅表示对所有样本的期望(实际训练中用样本加权和近似)。我们可以把损失函数拆分成 “每一轮迭代的累积损失”。假设第tttHtx∑k1tαkh。

2025-10-02 10:18:08 800

原创 第一篇:一文入门Adaboost:机器学习小白也能懂的集成学习神器

性能只比随机猜测略好一点的分类器(比如二分类问题中,准确率略高于 50%)。

2025-10-01 14:50:05 747

原创 CatBoost全栈学习指南(四):实战拓展篇——工业级场景落地与对比

对比维度CatBoostXGBoostLightGBM类别特征处理自动处理(Ordered Boosting),无需手动编码需手动编码(One-Hot/Label Encoding)需手动编码(支持类别特征,但需指定过拟合控制随机排列生成树 + L2 正则化 + 早停,抗过拟合能力强树剪枝 + L1/L2 正则化 + 列采样,需手动调参梯度 - based 单侧采样 + 直方图优化,易过拟合需谨慎调参训练速度中等(对称树 + 特征并行),CPU 利用率高较慢(串行训练,需手动开启并行)

2025-10-01 11:48:53 919

原创 CatBoost全栈学习指南(三):进阶调优篇——从良好到卓越的核心技巧

入门实践篇中,我们用默认参数就能实现不错的模型效果,但在工业场景(如不平衡数据、高维特征、业务指标约束)中,需通过 “精准调参”“问题适配” 进一步提升模型性能。本篇聚焦 CatBoost 的进阶调优技巧,涵盖 “参数调优方法论”“不平衡数据处理”“特征重要性与模型解释”“训练效率优化” 四大核心模块,帮你解决实践中的高频痛点。CatBoost 参数众多,但核心调优参数仅 10 余个。盲目试参不仅效率低,还易陷入 “过拟合陷阱”,需遵循 “从粗到细、分阶段调优” 的方法论,优先调整对模型影响最大的参数。根据

2025-10-01 11:48:19 1193

原创 CatBoost全栈学习指南(二):入门实践篇——30分钟上手全流程

在理解了 CatBoost 的理论基础(如 Ordered Boosting 编码、抗过拟合机制)后,本篇将聚焦 “落地实践”—— 从环境搭建到完整分类任务流程,带你用最小成本实现 CatBoost 的首次应用。内容包含 “环境准备→数据池创建→模型训练→评估预测”,所有代码可直接复制运行,新手也能快速上手。

2025-09-30 23:13:09 718

原创 CatBoost全栈学习指南(一):理论基础篇——吃透底层逻辑

Ordered Boosting 编码→解决类别特征手动处理痛点→提升易用性四重抗过拟合机制→降低调参难度→提升泛化能力对称树 + 特征并行→提升训练效率→支持大规模数据这三大逻辑链共同支撑了 CatBoost 在工业场景中的广泛应用 —— 既适合新手快速上手,也满足算法工程师对性能与效率的要求。下一篇(入门实践篇)将基于此理论,带你从 “环境搭建” 到 “完整分类任务流程”,实现 CatBoost 的首次落地。

2025-09-30 23:12:32 620

原创 高维小样本数据处理方法全景指南:从传统机器学习到大模型 (下)

预处理优先:通过 “特征选择 / 降维” 减少冗余,“样本增强” 扩充数据,为建模打基础;模型适配:从 “传统模型” 到 “深度学习 / 元学习” 再到 “大模型 PEFT”,按需选择,避免过度复杂;评估严谨:用 “分层 K 折交叉验证” 确保结果可靠,不被单一数据划分误导;领域结合:优先用 “领域专用模型 / 数据增强策略”,让方法适配数据特性,而非 “一刀切”。

2025-09-29 16:04:45 703

原创 高维小样本数据处理方法全景指南:从传统机器学习到大模型 (中)

当数据维度极高(如万维基因数据、图像像素)时,深度学习的可自动捕捉复杂模式,但需通过正则化、迁移学习缓解小样本问题。

2025-09-29 16:02:08 907

原创 高维小样本数据处理方法全景指南:从传统机器学习到大模型(上)

摘要:高维小样本数据处理方法指南 本文系统梳理了高维小样本数据(HDSS)的处理方法,重点解决维度远大于样本量带来的维度灾难、过拟合和数据稀疏三大挑战。文章从数据预处理、特征工程和样本增强三方面提出解决方案: 数据清洗采用多重插补和标准化处理缺失值与量纲问题; 特征选择通过过滤式、包裹式和嵌入式三类方法保留关键特征; 降维技术包括PCA等线性方法和UMAP等非线性方法; 样本增强采用SMOTE和数据扰动等方法扩充小样本。 这些方法为生物信息学、医学诊断等领域的高维小样本问题提供了系统解决方案。

2025-09-29 16:01:32 1037

原创 从原理到落地:图神经网络(GNN)全方位解析(附工业场景实战)- 第二部分(完)

原理本质:GNN 的核心是 “邻居信息聚合”,不同模型的差异在于 “聚合方式”——GCN 适合静态同质图,GAT 适合需差异化邻居的场景,图 SAGE 适合动态图,HGNN 适合多类型节点图;落地关键:“图结构设计” 比 “模型选择” 更重要,需结合业务需求筛选有效节点 / 边,量化边权重,避免盲目追求复杂模型;场景共性:无论推荐、风控还是生物医药,GNN 落地都需解决 “数据质量、效率、可解释性” 三大问题,可通过边过滤、采样训练、注意力可视化等方案应对;未来机会。

2025-09-28 08:48:04 681

原创 从原理到落地:图神经网络(GNN)全方位解析(附工业场景实战)- 第二部分

文章摘要 本文深入解析图神经网络(GNN)在工业场景中的应用,聚焦推荐系统这一典型场景。针对推荐系统中的冷启动和兴趣深度挖掘问题,提出基于异构图的解决方案,构建包含用户、商品、博主和类目的多类型节点网络。采用异构图神经网络(HGNN)结合图SAGE模型,通过聚合多维度关联信息实现精准推荐。文章提供完整的PyTorch代码实现,并分享实际落地中的关键优化点,如边权重归一化和新商品冷启动处理。该方案可直接应用于电商、内容平台等推荐场景,具有较高的实用价值。

2025-09-28 08:47:14 871

原创 从原理到落地:图神经网络(GNN)全方位解析(附工业场景实战)-第一部分

本文系统解析了图神经网络(GNN)的核心原理与工业应用。首先对比传统神经网络,阐明GNN处理图数据的独特优势,重点介绍其"邻居信息聚合"的核心思想。随后详细解析四大主流模型:基础款GCN、进阶款GAT(引入注意力机制)、适用于动态图的GraphSAGE以及处理异构图的HGNN,并针对每个模型分析适用场景与局限。最后分享工业落地实战经验,强调模型选择需结合业务特性,如推荐系统需关注邻居采样策略,风控场景需保留注意力机制的可解释性。全文兼顾理论深度与实践指导,为GNN在复杂关联数据中的应用提

2025-09-27 13:34:38 1020

原创 LightGBM全面解析:从原理到实战,再到高维小样本场景优化

LightGBM是一种高效的梯度提升框架,通过直方图优化和Leaf-wise生长策略解决了传统GBDT在大数据场景下的效率瓶颈。其核心优势在于:1)将连续特征离散化降低计算复杂度;2)优先分裂高增益节点提升计算效率;3)支持并行训练和多种正则化机制。针对高维小样本场景,建议控制树深度、增强正则化,并采用早停机制防止过拟合。本文提供了详细的参数调优指南和可直接复用的代码实现,特别适用于工业质检、医学分类等小样本分类任务。

2025-09-27 13:20:05 1243

原创 免费开源数据集平台大全

在数据分析、机器学习及 AI 项目开发中,高质量数据集是突破研发瓶颈的关键。本文针对开发者、研究者及学生群体,系统整理了通用、计算机视觉(CV)、自然语言处理(NLP)、金融经济、地理地图、社交行为 6 大领域的 20 + 个免费开源数据集平台,不仅提供可直接访问的官方网址,还详细说明各平台数据集特色、适用场景及商用许可规则,解决 “找数据难、辨合规难” 的核心痛点。无论是算法练手、学术研究还是商业项目开发,都能通过本文快速定位目标数据集,显著提升研发效率,是一份兼具实用性与收藏价值的工具指南。

2025-09-24 17:56:28 2931

原创 各种资源网站(值得收藏!!!)

World Digital Library(https://www.wdl.org/):联合国教科文组织和美国国会图书馆合作创建的数字图书馆,提供免费的历史文献、地图、照片和录音等资源。MIT OpenCourseWare(https://ocw.mit.edu/):麻省理工学院提供的开放课程平台,提供免费的课程材料,包括讲义、作业和视频讲座等。Data.gov(https://www.data.gov/):美国政府提供的开放数据平台,包含各种领域的数据集,可用于研究、分析和开发应用程序等。

2023-05-18 20:47:46 474140 1

转载 群体智能算法可投稿期刊

研究群体智能算法、启发式算法等可以投稿的相关期刊内容介绍。

2023-05-18 15:46:35 3580 1

转载 免费论文查找网站

如果有小伙伴有以下需求:1. 找英文论文 2. 找最新论文 3. 找有点影响力的论文;可以看看这篇转载的文章。

2023-05-18 14:48:17 289 1

原创 BM2.5算法的国内外研究进展

需要注意的是,这些研究进展只是BM25算法的一部分,还有其他相关的研究工作,如BM25的扩展和变体算法、BM25在不同应用场景下的性能比较等。改进BM25算法:在BM25算法的基础上,研究者们提出了很多改进的方法,如调整BM25中的参数,改变文档长度的计算方法等。BM25在多语言信息检索中的应用:研究者们扩展了BM25算法,以支持多语言信息检索任务。BM25算法在垂直领域中的应用:研究者们将BM25算法应用于特定的垂直领域,如医疗、法律等,通过构建领域相关的语料库和特征工程,提高了领域内的文本检索效果。

2023-05-17 19:23:14 1269 2

原创 企业数据库面试会问一些什么题目?

最近在学习数据库的知识,对一些企业招聘可能会问到的数据库面试进行了总结。

2023-05-17 18:58:28 135 2

转载 【无标题】随机森林讲解(转载)

看到一篇讲解随机森林很好的文章,希望被更多人看到。

2023-05-10 21:29:00 470 2

应用Java开发的计算机专业毕业设计源码+论文

应用Java开发的计算机专业毕业设计源码+论文

2024-12-16

果蝇优化算法求解函数最小值动态可视化.zip

果蝇优化算法(Fruit Fly Optimization Algorithm,简称FOA)是一种模拟昆虫觅食行为的启发式优化算法,用于求解最优化问题。FOA的基本思想是模拟果蝇在搜索食物过程中的行为,通过群体智能和信息交流来寻找最优解。果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)具有以下几个优势: 简单而有效:FOA的基本原理和操作相对简单,易于理解和实现。它通过模拟果蝇觅食行为来进行搜索,不需要复杂的数学模型或推导过程,因此适用于各种问题和应用场景。 全局搜索能力:FOA具有较好的全局搜索能力,可以在搜索空间中广泛探索,找到潜在的最优解。这归功于果蝇个体之间的信息交流和合作行为,以及食物信息素的释放和挥发过程。 自适应性和鲁棒性:FOA具有自适应性,可以根据搜索过程中的信息更新策略来调整果蝇的行为。它可以适应不同问题的特性和搜索空间的变化,具有一定的鲁棒性。 适用性广泛:FOA适用于解决各种优化问题,包括连续优化问题和离散优化问题。它可以应用于函数优化、组合优化、参数优化等多个领域。

2023-05-31

灰狼优化算法求解函数最小值动态可视化.zip

灰狼优化算法(Grey Wolf Optimization Algorithm,GWO)是一种基于灰狼群体行为的启发式优化算法,用于求解最优化问题。GWO模拟了灰狼群体的社会行为,通过模拟狼群中的捕食行为来进行优化搜索。 GWO相比其他优化算法具有以下优势: 全局搜索能力:GWO具有较强的全局搜索能力,能够在搜索空间中广泛探索,并找到潜在的最优解。这得益于模拟狼群的社会行为和捕食行为,使得灰狼个体能够相互合作,从而提高搜索效率。 简单而高效:GWO的实现相对简单,易于理解和使用。它不需要复杂的数学模型和推导过程,而是通过简单的公式和规则来模拟狼群的行为,使得算法高效且易于实现。 自适应性和鲁棒性:GWO具有自适应性,可以根据问题的特性和搜索过程中的动态变化来调整狼群的行为。它能够适应不同问题的特点,以及搜索空间的变化,并在搜索过程中进行动态调整,增强了算法的鲁棒性。 较少的参数:GWO相比其他优化算法具有较少的参数需要调整。它主要包括狼群数量和迭代次数等几个参数,相对简单且不敏感。这减轻了算法使用者的负担,并提高了算法的易用性。

2023-05-31

正余弦搜索算法matlab代码

正弦余弦算法(SCA)是一种新颖的随机优化算法,主要利用正弦函数和余弦函数的波动性与周期性来搜索和迭代,从而达到寻优目的(算法的步骤以及结构都相对简单)。主要步骤就是利用正余弦函数进行全局搜索,其中,最关键的是自适应参数 r1 ,控制算法从全局搜索到局部开发的转换。当 r1 的值较大时,算法倾向于全局搜索;当 r1 的值较小时,算法偏向于局部开发;可用于算法改进。

2023-05-23

海洋捕食者算法matlab代码

海洋捕食者算法(Marine Predators Algorithm,MPA)。该算法由Afshin Faramarzi等人)于2020年提出,主要模拟了海洋中适者生存的过程。在算法中,“猎物”、“捕食者”这两个身份对个体而言是变换的,且其独有的海洋记忆存储阶段与海洋漩涡影响阶段,因此思路较为新奇。 MPA优化过程分为三个主要阶段,考虑不同的速度比,同时模拟捕食者和猎物的整个生命周期: (1).在高速度比或猎物移动速度快于捕食者时; (2).单位速度比或捕食者和猎物以几乎相同的速度移动时; (3).低速度比且当捕食者的移动速度比猎物快时。 该算法可进行改进和应用。

2023-05-23

医疗结构化面试相关资料

医疗结构化面试

2023-05-10

UCI数据集及相应代码.rar

148个UCI整理好的数据集及相应代码,由matlab编写,可用于不同算法训练和测试。

2023-05-18

麻雀搜索算法优化BP神经网络回归预测

麻雀搜索算法优化BP神经网络回归预测matlab代码

2023-05-17

基于Levy飞行的麻雀搜索算法

基于Levy飞行改进的麻雀搜索算法,由matlab编写

2023-05-12

基于反向策略的麻雀搜索算法

基于反向策略的麻雀搜索算法matlab代码

2023-05-12

十种群体智能优化算法对比

算法包括麻雀、蝴蝶、鲸鱼等群体智能算法的对比

2023-05-12

40种回归、分类、特征选择降维等方法合集

40种回归、分类、特征选择降维等方法合集

2023-05-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除