本篇文章为各位带来判断素数还是质数的高效算法,理解此算法前应先明白使用 sqrt(num) 为判断条件判断素数的方法。
1.定义算法原理:凡是大于5的素数一定与6的倍数相邻。
下面给出相关算法:
#include<iostream>
#include<math.h>
using namespace std;
bool isPrime(int num)
{
if(num==2 || num==3 )
return true;
if(num%6!=1 && num%6!=5)
return false;
else
return true;
}
int main(){
//验证算法
for(int i=2 ; i<=100 ; i++){
if(isPrime(i))
cout<<i<<"是素数"<<endl;
else
cout<<i<<"不是素数"<<endl;
}
return 0;
}
2.验证算法:
3.完善算法:
①思考:想要完善此算法,先想一想为什么会把25、35、49等数判为素数呢?
②分析:我们通过分解25、35、49的因数发现这些数的共同点:都有因数与6的倍数相邻
例如:25的因数5,35的因数5、7,49的因数7。
经过if判断后,剩下的数字都是与6的倍数相邻的数字
5、7、11、13、...23、25、29、31、35、37......
③总结:出现问题的原因就是:因为这些6的倍数相邻的数字中有些数字是其他数字的因数。
④完善算法:
#include<iostream>
#include<math.h>
using namespace std;
bool isPrime(int num)
{
if(num==2 || num==3 )
return true;
if(num%6!=1 && num%6!=5)
return false;
int tmp=sqrt(num);
//步长为6的原因是,只需要判断该数是否有因数在6的倍数旁边
for(int i=5 ; i<=tmp ; i+=6 )
if(num%i==0 || num%(i+2)==0 ) //加2是因为与6的倍数相邻的数有两个
return false;
return true;
}
int main(){
for(int i=2 ; i<=100 ; i++){
if(isPrime(i))
cout<<i<<"是素数"<<endl;
else
cout<<i<<"不是素数"<<endl;
}
return 0;
}