BZOJ3631 [JLOI2014]松鼠的新家(树链剖分)

直接进行树链剖分 
每一轮,路径上的点加1
最后输出答案时,除起点外的结点权值要减1
只用到区间增减,单点查询和值,因此并不需要线段树来维护 

另一种思路:类似前缀和的思想 

从起点x到终点y,只需给x,y两个结点加1,给LCA(x,y),fa[LCA(x,y)]减1,最后做一次从底到根的递推即可求出每个点在多少条链上 


树剖:

#include<stdio.h>
#include<stdlib.h>
#include<vector>
using namespace std;
vector<int> G[300005];
int a[300005],fa[300005],deep[300005],size[300005],son[300005],top[300005],pos[300005],s[1200005];
int tot=0;
void jh(int* a,int* b)
{
	int t=*a;
	*a=*b;
	*b=t;
}
void dfs1(int x,int f)
{
	int i;
	fa[x]=f;
	size[x]=1;
	for(i=0;i<G[x].size();i++)
		if(G[x][i]!=f)
		{
			deep[G[x][i]]=deep[x]+1;
			dfs1(G[x][i],x);
			size[x]+=size[G[x][i]];
			if(size[G[x][i]]>size[son[x]]) son[x]=G[x][i];
		}
}
void dfs2(int x,int t)
{
	int i;
	top[x]=t;
	pos[x]=++tot;
	if(son[x]>0) dfs2(son[x],t);
	for(i=0;i<G[x].size();i++)
		if(G[x][i]!=fa[x]&&G[x][i]!=son[x]) dfs2(G[x][i],G[x][i]);
}
void xg(int x,int y)
{
	s[x]++;
	s[y+1]--;
}
void tree_xg(int x,int y)
{
	while(top[x]!=top[y])
	{
		if(deep[top[x]]<deep[top[y]]) jh(&x,&y);
		xg(pos[top[x]],pos[x]);
		x=fa[top[x]];
	}
	if(deep[x]>deep[y]) jh(&x,&y);
	xg(pos[x],pos[y]);
}
int main()
{
	int n,i,x,y;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
		scanf("%d",&a[i]);
	for(i=1;i<n;i++)
	{
		scanf("%d%d",&x,&y);
		G[x].push_back(y);
		G[y].push_back(x);
	}
	dfs1(1,0);
	dfs2(1,1);
	for(i=1;i<n;i++)
		tree_xg(a[i],a[i+1]);
	for(i=1;i<=n;i++)
		s[i]+=s[i-1];
	for(i=1;i<=n;i++)
	{
		if(i==a[1]) printf("%d\n",s[pos[i]]);
		else printf("%d\n",s[pos[i]]-1);
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值