cjm_success
码龄5年
关注
提问 私信
  • 博客:33,782
    33,782
    总访问量
  • 9
    原创
  • 60,322
    排名
  • 21
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2020-02-28
博客简介:

cjm_success的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    0
    当前总分
    24
    当月
    0
个人成就
  • 获得45次点赞
  • 内容获得5次评论
  • 获得227次收藏
  • 代码片获得114次分享
创作历程
  • 1篇
    2024年
  • 11篇
    2020年
成就勋章
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

174人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

基于Python的屏幕录制转GIF工具

Github项目链接: https://github.com/ScreenToGifPython/stg。
原创
发布博客 2024.10.02 ·
570 阅读 ·
22 点赞 ·
0 评论 ·
14 收藏

python优化小技巧

选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化来提高程序的执行效率。Python为什么性能差?1、python是动态语言一个变量所指向对象的类型在运行时才确定,编译器做不了任何预测,也就无从优化。举一个简单的例子: r = a + b。 a和b相加,但a和b的类型在运行时才知道,对于加法操作,不同的类型有不同的处理,所以每次运行的时候都会去判断a和b
转载
发布博客 2020.12.21 ·
352 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

如何批量导出&安装Python库

如何导出我的Python环境用cmdpip freeze > C:\packages.txt如何批量安装Python库用cmdpackages.txt 就是pip install -r C:\packages.txt
原创
发布博客 2020.12.17 ·
459 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

数据预处理

数据预处理数据分析大致步骤:(偏业务方向)需求分析数据收集数据清洗 (数据预处理)特征工程 (数据预处理)数据分析数据预处理探索性分析、统计学分析业务分析建模分析出报告1. 数据清洗1.1 检测与处理重复值a) 检查重复值duplicated ( subset=None, keep=‘first’ )参数名说明subset接收string或sequence。表示进行去重的列。默认为None,表示全部列keep接收特定string
原创
发布博客 2020.08.25 ·
802 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

金融量化基础

4. 简单金融量化分析4.1 移动平均线a) 概念 & 策略移动均线(Moving Average,简称MA)是用统计分析的方法,将一定时期内的证券价格(指数)加以平均,并把不同时间的平均值连接起来,形成一根MA,用以观察证券价格变动趋势的一种技术指标。移动平均线是由著名的美国投资专家Joseph E.Granville(葛兰碧,又译为格兰威尔)于20世纪中期提出来的。均线理论是当今应用最普遍的技术指标之一,它帮助交易者确认现有趋势、判断将出现的趋势、发现过度延生即将反转的趋势。移动均线常用
原创
发布博客 2020.08.17 ·
2222 阅读 ·
5 点赞 ·
1 评论 ·
21 收藏

多项式模型与多项式拟合

3. 多项式模型 (一元多次方程)3.1 多项式拟合在有些数据分布中,使用一条曲线比直线能更好拟合数据,这就需要用到多项式拟合。如下图所示分布:多项式的一般形式:y=p0xn+p1xn−1+p2xn−2+p3xn−3+...+pny=p_{0}x^n + p_{1}x^{n-1} + p_{2}x^{n-2} + p_{3}x^{n-3} +...+p_{n}y=p0​xn+p1​xn−1+p2​xn−2+p3​xn−3+...+pn​多项式拟合的目的是为了找到一组 p0,p1,...,p
原创
发布博客 2020.08.17 ·
12494 阅读 ·
6 点赞 ·
0 评论 ·
96 收藏

线性模型与线性拟合

2. 线性模型 (一元一次方程)2.1 线性方程如下直线方程属于·线性方程:y=kx+by = kx + by=kx+b图像可表示为:2.2 线性拟合在实际应用中,输入和输出可以用线性模型进行拟合,称之为线性模型或线性问题(如房屋面积与总价、成年人的身高与体重)如下图所示:线性拟合就是试图找到一个最优的线性方程,可以最好的匹配当前样本(到所有样本的距离之和最短,误差最小)。若已知样本只有一个自变量xxx与一个因变量yyy,则线性方程可表示为:y=kx+by = kx + by=
原创
发布博客 2020.08.17 ·
6051 阅读 ·
0 点赞 ·
0 评论 ·
20 收藏

矩阵

1. 矩阵矩阵是 numpy.matrix 类型的对象,该类继承自 numpy.ndarray任何针对多维数组的操作,对矩阵同样有效,但是作为子类矩阵又结合其自身的特点,做了必要的扩充,比如:乘法计算、求逆等。矩阵的特殊计算方式可以很好的在应用在计算线性函数上1.1 矩阵对象的创建numpy的 matrix() 和 mat() 函数可以将二维数组转为矩阵import numpy as np# 创建一个3行3列的二维数组data = np.arange(1, 10).reshape(3,3
原创
发布博客 2020.08.17 ·
191 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Matplotlib 常用可视化操作

Matplotlib 常用可视化操作文章目录Matplotlib 常用可视化操作0. matplotlib 介绍1. 简单辅助线2. 坐标轴设置用figure() 函数创建图表设置x轴 与 y轴的名称设置x轴 与 y轴的数据范围设置x轴和y轴的坐标刻度设置图表标题移动坐标轴 & 改变轴颜色其他一些坐标轴的方法和参数3. 显示图例 (legend & label)4. 显示备注 (annotate & test)用annotate()函数可用于显示带箭头的备注用text()函数可以在
原创
发布博客 2020.08.12 ·
2974 阅读 ·
7 点赞 ·
2 评论 ·
33 收藏

Pandas--Series类型数据的基本操作

1.1 Series作者: Kevin Chen文章目录1.1 Series@[toc]1.1.1 创建series数组a) 不自定义标签b) 自定义标签c) 创建随机series1.1.2 提取series的数据1.1.3 series数据的增删改a) 添加b) 删除c) 修改1.1.4 常用series属性和方法a) series的常用属性b) series的常用方法1) series相关运算2) series数值判断3) series排序方法4) series复制方法Series可以理解为
原创
发布博客 2020.08.06 ·
3359 阅读 ·
3 点赞 ·
0 评论 ·
25 收藏

牛客网MySQL练习

14. 牛客网MySQL练习MySQL常用命令集合 (帮你写练习~)# MySQL查询语句的 执行 & 书写 顺序(7) SELECT (8) DISTINCT <select_list>(1) FROM <left_table>(3) <join_type> JOIN <right_table>(2) ON <join_condition>(4) WHERE <where_condition>(
转载
发布博客 2020.08.03 ·
1867 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

MySQL常用命令

MySQL常用命令文章目录MySQL常用命令1. 数据库基础管理0.0 进入MySQL1.1 查看已有的数据库1.2 创建新数据库1.3 切换/使用某数据库1.4 查看现在所在的数据库1.5 删除数据库2. MySQL基本数据类型2.1 数字类型2.2 字符串类型a) 普通字符串b) 文本内容c) 二进制数据d) 选择型数据2.3 日期类型a) 日期时间函数b) 日期时间的比较操作3. 表的基本操作3.1 查看数据库内的表3.2 创建表3.3 查看表信息 & 数据3.4 删除表3.5 表重命名3.
转载
发布博客 2020.07.30 ·
1681 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏