经典问题:方格取数,二分图的最大权独立集,直接把我的isap卡的天崩地裂。。。。。。
>.<!话说当时写现在用的程序是以前看了某某的博客,加上YY了一顿,no 当前弧优化, 单路增广,递归版。。。。。。仅仅加了个gap优化>.<
就这样还是挤过了秋哥的“最大流强数据”,还踩掉了hyc的多路增广dinic = 。 =!结果这次一个普通的二分图就把我卡了。。。。。。
以前那个丑程序就不贴了=。=!
热烈祝贺 从递归版单路增广无当前弧isap 转变为 非递归版多路增广加当前弧dinic(转变真大), 感谢lzn 提供程序,以及lyp,hyc 提供不同的代码对比长度。
3个过程一共37 行,无奇葩缩行,很好理解。
速度快,空间小,代码短,真可谓是居家旅行之必备呀.
# include <cstdlib>
# include <cstdio>
# include <cmath>
#include <ctime>
#include <cstring>
using namespace std;
const int maxn = 110, maxm = 105000, oo=1073741819;
int top, next[maxm*2], point[maxm*2], linke[maxm*2], wis[maxm*2], a[maxn][maxn];
int tot, p, tab[maxm], prev[maxm], shift[maxm], flow, s, t, maxflow, n, m;
int mx[10], my[10];
int l, r, que[maxm], step[maxm], adm[maxm];
bool flag;
inline int min(int x, int y){return x<y?x:y;};
void link(int x, int y, int z)
{
++top; next[top] = linke[x]; linke[x] = top; point[top] = y; wis[top] = z;
++top; next[top] = linke[y]; linke[y] = top; point[top] = x; wis[top] = 0;
}
bool bfs()
{
memset(tab, -1, sizeof(tab));
int l = 1, r = 1; que[l] = s; tab[s] = 1;
for (;l <= r;l++)
for (int ke = linke[que[l]]; ke; ke = next[ke])
{
if (tab[point[ke]]==-1 && wis[ke])
tab[que[++r] = point[ke]] = tab[que[l]] + 1;
if (que[r] == t) return true;
}
return false;
}
void improve()
{
flow = oo;
for (int x = prev[t]; x ;x = prev[x])
if (wis[shift[x]] < flow) p = x, flow = wis[shift[x]];
for (int x = prev[t]; x ;x = prev[x])
wis[shift[x]] -= flow, wis[shift[x]^1] += flow;
maxflow += flow;
}
void dfs()
{
memcpy(shift, linke, sizeof(shift));
for (int x = s, y;x ;)
{
int flag = false;
for (int ke = shift[x]; ke; ke = next[ke])
if (wis[ke] && (tab[y = point[ke]] == tab[x] + 1))
{
prev[y] = x; shift[x] = ke; x = y; flag = true;
if (x == t) improve(), x = p;
if (flag) break;
}
if (!flag) tab[x] = -1,x = prev[x];
}
}
int main()
{
int i, j, k, ii, jj;
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
scanf("%d%d",&n, &m); top = 1;
mx[1]=1; mx[2]=0; mx[3]=-1; mx[4]=0;
my[1]=0; my[2]=1; my[3]=0; my[4]=-1;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
scanf("%d", &a[i][j]), tot+= a[i][j];
s = n*m+1; t = s+1;
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
if (i+j&1)
link(s, (i-1)*m+j, a[i][j]);
else
link((i-1)*m+j, t, a[i][j]);
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
if (i+j&1)
for (k = 1; k <= 4; k++)
{
ii = i+mx[k]; jj= j+my[k];
if (ii>=1&&ii<=n&&jj>=1&&jj<=m) link((i-1)*m+j, (ii-1)*m+jj, oo);
}
memcpy (adm, linke, sizeof(adm));
while ( bfs())
dfs();
printf("%d", tot-maxflow);
return 0;
}
话说考场上看出来问题是一个二分图最大权独立集的模型,但是不会算法=。=! 下星期强力强力恶补图论!!!!!!