-
1、稠密图的prim算法:
- 思路:就是Dijstra,只不过每次更新的时候将d[j]更新成到集合的距离,其他思想一样先找到没有在集合之中离集合最近的点,将其的权值加加,然后用该最短点更新所有点,并把它标记为在集合中
#include<iostream>
#include<cstring>
using namespace std;
int n,m;
const int N=510,M=1e5+10;
int g[N][N];
int d[M];
bool st[M];
int prim()
{
int res=0;
memset(d,0x3f,sizeof d);
for(int i=0;i<n;i++)
{
int t=-1;
for(int j=1;j<=n;j++)
if(!st[j]&&(t==-1||d[t]>d[j]))
t=j;
if(i&&d[t]==0x3f3f3f3f)return 0x3f3f3f3f;
if(i)res+=d[t];
for(int j=1;j<=n;j++)
d[j]=min(d[j],g[t][j]);
st[t]=true;
}
return res;
}
int main()
{
memset(g,0x3f,sizeof g);
cin>>n>>m;
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
g[a][b]=g[b][a]=min(c,g[a][b]);
}
int t=prim();
if(t==0x3f3f3f3f)cout<<"impossible"<<endl;
else cout<<t<<endl;
return 0;
}
-
2、堆优化版的prim算法
- 又是贼像堆优化的Dijstra但是由于Kruskal算法的存在,显的堆优化的prim有些o_o …Kruskal明显更优,堆优化Prim又臭又长,还容易MLE直接不考虑
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
const int N=2e5+10,INF = 0x3f3f3f3f;
typedef pair<int,int> PII;
int h[N],e[N],w[N],ne[N],idx;
bool st[N];
int n,m;
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
int Prim()
{
int res=0,cnt=0;
priority_queue<PII,vector<PII>,greater<PII>>q;
q.push({0,1});
while(!q.empty())
{
auto t=q.top();
q.pop();
int ver=t.second,dst=t.first;
if (st[ver])continue;
st[ver]=true,res+=dst,++cnt;
for (int i=h[ver];i!=-1;i=ne[i])
{
int j=e[i];
if (!st[j])
{
q.push({w[i],j});
}
}
}
if (cnt!=n) return INF;
return res;
}
int main()
{
cin>>n>>m;
memset(h,-1,sizeof h);
for (int i=0;i<m;++i)
{
int a,b,w;
cin>>a>>b>>w;
add(a,b,w);
add(b,a,w);
}
int t = Prim();
if (t==INF)cout<<"impossible"<<endl;
else cout<<t<<endl;
return 0;
}
-
3、稀疏图的Kruskal算法
- 先存边,再排序再用并查集判断加边,要是能加上,即不在一个集合则加边并把他们放到一个集合,在同一个集合则不考虑
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e5+10;
int n,m;
int f[N];
int d[N*2];
struct node
{
int x,y,w;
}e[N*4];
bool cmp(node a,node b)
{
return a.w<b.w;
}
int find(int u)
{
if(u!=f[u])f[u]=find(f[u]);
return f[u];
}
int main()
{
cin>>n>>m;
int cnt=-1;
for(int i=1;i<=n;i++)
f[i]=i;
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
e[++cnt].x=a,e[cnt].y=b,e[cnt].w=c;
e[++cnt].x=b,e[cnt].y=a,e[cnt].w=c;
}
sort(e,e+cnt+1,cmp);
int res=0;
int coubt=0;
for(int i=0;i<=cnt;i++)
{
int x=find(e[i].x);
int y=find(e[i].y);
if(x!=y)
{
f[x]=y;
res+=e[i].w;
coubt++;
}
}
if(coubt==n-1)
cout<<res<<endl;
else puts("impossible");
return 0;
}