题目描述:437. 路径总和 III(中等)
给定一个二叉树的根节点 root
,和一个整数 targetSum
,求该二叉树里节点值之和等于 targetSum
的 路径 的数目。
路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。
LeetCode做题链接:LeetCode-路径总和 III
示例 1:
输入:root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
输出:3
解释:和等于 8 的路径有 3 条,如图所示。
示例 2:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:3
提示:
二叉树的节点个数的范围是 [0,1000]
-109 <= Node.val <= 109
-1000 <= targetSum <= 1000
题目接口
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int pathSum(TreeNode root, int targetSum) {
}
}
解题思路
主要思路:
- 定义一个哈希表preSumMap,用于存储前缀和及其出现次数。同时,将目标和target初始化为给定的目标和。
- 调用递归函数recur来计算从根节点到叶子节点的路径和等于目标和的路径数量。
- 在递归函数中,首先判断当前节点是否为空,如果为空则返回0,表示没有符合条件的路径。
- 计算当前路径和curNum,即当前节点的值与前缀和的和。
- 使用哈希表preSumMap查询curNum-target的前缀和出现的次数,如果不存在则默认为0。将结果存入res变量中。
- 更新哈希表preSumMap,将curNum的出现次数加1。
- 递归调用左子树和右子树,分别传入curNum作为新的前缀和,并将返回的结果累加到res中。
- 回溯时,将哈希表preSumMap中curNum的出现次数减1,以便后续其他路径使用。
- 返回res,即符合条件的路径数量。
通过递归地遍历二叉树的每个节点,并利用前缀和和哈希表进行动态规划,可以在O(N)的时间复杂度内求解路径和问题,其中N是二叉树的节点数。
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
// 用于存储前缀和及其出现次数的哈希表
Map<Long, Long> preSumMap;
// 目标和
Long target;
public int pathSum(TreeNode root, int targetSum){
preSumMap = new HashMap<>();
target = Long.valueOf(targetSum);
preSumMap.put(0L, 1L);
return recur(root, 0L).intValue();
}
// 递归函数,计算从根节点到叶子节点的路径和等于目标和的路径数量
private Long recur(TreeNode root, Long preSum){ //返回以root为根节点的符合题目条件的答案个数
if(root == null) return 0L;
Long curNum = Long.valueOf(root.val + preSum); //当前路径和
Long res = preSumMap.getOrDefault(Long.valueOf(curNum-target), 0L); //更新答案
preSumMap.put(Long.valueOf(curNum), preSumMap.getOrDefault(curNum, 0L)+1); //更新前缀和出现的次数
res += recur(root.left, curNum); //递归左子树
res += recur(root.right, curNum); //递归右子树
preSumMap.put(Long.valueOf(curNum), preSumMap.get(curNum)-1); //回溯时,将当前前缀和的出现次数减1
return res;
}
}
成功!
PS:
感谢您的阅读!如果您觉得本篇文章对您有所帮助,请给予博主一个赞喔~