大数据分析案例:电力窃漏电用户自动识别

本文通过大数据分析,利用CART决策树和LM神经网络模型识别电力窃漏电用户。数据预处理采用朗格拉日插值法处理缺失值,模型对比显示LM神经网络在分类性能上优于CART模型,更适合自动识别任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

电力窃漏电用户自动识别

1.背景与数据分析目的

a.通过电力系统采集到的数据,提取出窃漏电用户的关键特征,
b.构建窃漏电用户的识别模型:以实现自动检查、判断用户是否是存在窃漏电行为。


2.数据预处理

通过对拿到的数据进行数据质量分析,检查原始数据中存在的脏数据,通过查看原始数据中抽取的数据,发现存在数据缺失的现象,使用朗格拉日插值法:选取缺失值前5个数据作为前参考组,缺失值后5个数据作为后参考组,处理缺失值程序如下图1.1所示:

# -*- coding: utf-8 -*-
# 利用拉格朗日插值处理数据缺失代码
import pandas as pd  
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

*猪耳朵*

听我说谢谢你,因为有你。。。。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值