python实现二叉树

首先我们先介绍数的概念。

一、树

树的结点

结点:使用树结构存储的每一个数据元素都被称为“结点”。例如,图 1(A)中,数据元素 A 就是一个结点;

父结点(双亲结点)、子结点和兄弟结点:对于图 1(A)中的结点 A、B、C、D 来说,A 是 B、C、D 结点的父结点(也称为“双亲结点”),而 B、C、D 都是 A 结点的子结点(也称“孩子结点”)。对于 B、C、D 来说,它们都有相同的父结点,所以它们互为兄弟结点。

树根结点(简称“根结点”):每一个非空树都有且只有一个被称为根的结点。图 1(A)中,结点A就是整棵树的根结点。

叶子结点:如果结点没有任何子结点,那么此结点称为叶子结点(叶结点)。例如图 1(A)中,结点 K、L、F、G、M、I、J 都是这棵树的叶子结点。

结点的度和层次

对于一个结点,拥有的子树数(结点有多少分支)称为结点的度(Degree)。例如,图 1(A)中,根结点 A 下分出了 3 个子树,所以,结点 A 的度为 3。

一棵树的度是树内各结点的度的最大值。图 1(A)表示的树中,各个结点的度的最大值为 3,所以,整棵树的度的值是 3。一棵树的度是树内各结点的度的最大值。图 1(A)表示的树中,各个结点的度的最大值为 3,所以,整棵树的度的值是 3。

结点的层次:从一棵树的树根开始,树根所在层为第一层,根的孩子结点所在的层为第二层,依次类推。对于图 1(A)来说,A 结点在第一层,B、C、D 为第二层,E、F、G、H、I、J 在第三层,K、L、M 在第四层。

树的种类:

  • 无序树:树中任意节点的子节点之间没有顺序关系,称为无序树
  • 有序树:树中任意节点的子节点之间有顺序关系,称为有序树
    • 二叉树:每个节点最多含有两个子树的树称为二叉树
      • 完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其他各层的节点数目均已达到最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树称为完全二叉树,其中满二叉树的定义是所有叶子节点都在最底层的完全二叉树
      • 平衡二叉树(AVL树):当且仅当任何节点的两颗子树的高度差不大于1的二叉树
      • 排序二叉树:当我们遍历树中的节点时,是有序的
    • 霍夫曼树
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值