本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
系统程序文件列表
开题报告内容
一、研究背景与意义
随着互联网的发展,企业舆情信息呈现爆炸式增长。为了及时捕捉公众对企业的态度与情感,企业舆情监控与分析系统应运而生。该系统能够实时抓取、分类和分析网络上的舆情信息,为企业决策提供有力的数据支持,有助于提升品牌形象,及时发现并应对负面舆情。
二、研究目标
本研究旨在开发一套高效、智能的企业舆情监控与分析系统,实现对企业相关舆情信息的实时抓取、分类、分析和报告生成。系统应能够自动识别舆情信息的情感倾向,提供预警机制,帮助企业及时应对潜在的危机。
三、研究内容
- 数据采集:通过网络爬虫技术,实时抓取社交媒体、新闻网站等平台上的企业相关舆情信息。
- 数据预处理:对采集到的数据进行清洗、去重和分类,提高数据质量。
- 情感分析:利用自然语言处理技术,对舆情信息进行情感倾向分析,识别正面、负面和中立情感。
- 趋势预测:基于历史数据,分析舆情信息的传播趋势,预测未来的舆情走向。
- 报告生成:根据分析结果,自动生成舆情监控报告,提供可视化展示。
四、研究方法
本研究将综合运用文献综述、技术调研、系统设计、开发与测试等方法。通过文献综述和技术调研,明确研究背景和现状;通过系统设计和开发,实现系统的各项功能;最后通过测试与优化,确保系统的稳定性和准确性。
五、预期成果
预期成果包括一套功能完善的企业舆情监控与分析系统,以及一份详细的实施报告和技术文档。该系统将为企业提供一个全面、实时的舆情监控与分析工具,助力企业提升品牌形象和市场竞争力。
进度安排:
2023年12月20日—2024年01月20日:查阅和收集课题相关资料,进行市场调研,确定选题;
2024年01月21日—2024年02月15日:进一步查阅资料,撰写开题报告,准备开题、答辩;
2024年02月16日—2024年03月10日:系统规划、整体规划、详细设计、编写代码;
2024年03月11日—2024年04月18日:系统测试;
2024年04月19日—2024年04月28日:撰写毕业论文;
2024年04月29日—2024年05月09日:修改论文并提交论文正稿;
2024年05月10日—2024年05月22日:由指导老师评阅,修改完善论文,准备毕业答辩。
参考文献:
[1]李盛恩,王珊.数据库基础与应用(第二版)[M].北京:人民邮电出版社,2018:14-78.
[2]孙卫琴:《精通Hibernate:Java对象持久化技术详解[M].电子工业出版社出版
[3]王珊,萨师煊.数据库系统概论[M].高等教育出版社,2016.5:198-235.
[4]张孝祥.深入Java Web开发内幕——核心基础[M].北京:电子工业出版社.北京.2016.10.
[5] 舒红平.Web 数据库编程-jav