AC自动机+矩阵快速幂+递归求和.....
从反面考虑,不含有任何词根的单词数可以用AC自动机构建矩阵求出.....所有单词数-不含有任何词根的单词数就是答案.
考研路茫茫——单词情结
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3131 Accepted Submission(s): 899
Problem Description
背单词,始终是复习英语的重要环节。在荒废了3年大学生涯后,Lele也终于要开始背单词了。
一天,Lele在某本单词书上看到了一个根据词根来背单词的方法。比如"ab",放在单词前一般表示"相反,变坏,离去"等。
于是Lele想,如果背了N个词根,那这些词根到底会不会在单词里出现呢。更确切的描述是:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。
比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。
这个只是很小的情况。而对于其他复杂点的情况,Lele实在是数不出来了,现在就请你帮帮他。
一天,Lele在某本单词书上看到了一个根据词根来背单词的方法。比如"ab",放在单词前一般表示"相反,变坏,离去"等。
于是Lele想,如果背了N个词根,那这些词根到底会不会在单词里出现呢。更确切的描述是:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。
比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。
这个只是很小的情况。而对于其他复杂点的情况,Lele实在是数不出来了,现在就请你帮帮他。
Input
本题目包含多组数据,请处理到文件结束。
每组数据占两行。
第一行有两个正整数N和L。(0<N<6,0<L<2^31)
第二行有N个词根,每个词根仅由小写字母组成,长度不超过5。两个词根中间用一个空格分隔开。
每组数据占两行。
第一行有两个正整数N和L。(0<N<6,0<L<2^31)
第二行有N个词根,每个词根仅由小写字母组成,长度不超过5。两个词根中间用一个空格分隔开。
Output
对于每组数据,请在一行里输出一共可能的单词数目。
由于结果可能非常巨大,你只需要输出单词总数模2^64的值。
由于结果可能非常巨大,你只需要输出单词总数模2^64的值。
Sample Input
2 3 aa ab 1 2 a
Sample Output
104 52
Author
linle
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef unsigned long long int uLL;
typedef long long int LL;
#pragma comment(linker, "/STACK:102400000,102400000")
/************ac_****************/
const int maxn=55;
int ch[maxn][26],fail[maxn],end[maxn];
int root,sz;
char str[maxn];
int N;
LL L;
int newnode()
{
memset(ch[sz],-1,sizeof(ch[sz]));
end[sz++]=0;
return sz-1;
}
void ac_init()
{
sz=0;
root=newnode();
}
void ac_insert(char str[])
{
int len=strlen(str);
int now=root;
for(int i=0;i<len;i++)
{
if(ch[now][str[i]-'a']==-1)
ch[now][str[i]-'a']=newnode();
now=ch[now][str[i]-'a'];
}
end[now]++;
}
void ac_build()
{
queue<int> q;
fail[root]=root;
for(int i=0;i<26;i++)
{
if(ch[root][i]==-1)
ch[root][i]=root;
else
{
fail[ch[root][i]]=root;
q.push(ch[root][i]);
}
}
while(!q.empty())
{
int now=q.front(); q.pop();
if(end[fail[now]]) end[now]++;
for(int i=0;i<26;i++)
{
if(ch[now][i]==-1)
ch[now][i]=ch[fail[now]][i];
else
{
fail[ch[now][i]]=ch[fail[now]][i];
q.push(ch[now][i]);
}
}
}
}
/***********MATRIX***************/
struct MARTRIX
{
int n;
uLL martrix[maxn][maxn];
MARTRIX(int x)
{
n=x; memset(martrix,0,sizeof(martrix));
}
void getONE()
{
for(int i=0;i<n;i++)
martrix[i][i]=1LL;
}
MARTRIX operator * (const MARTRIX & b ) const
{
MARTRIX ret(n);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
uLL temp=0;
for(int k=0;k<n;k++)
{
temp+=martrix[i][k]*b.martrix[k][j];
}
ret.martrix[i][j]=temp;
}
}
return ret;
}
MARTRIX operator + (const MARTRIX & b ) const
{
MARTRIX ret(n);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
ret.martrix[i][j]=martrix[i][j]+b.martrix[i][j];
}
}
return ret;
}
};
/***************QuickPow********************/
uLL QuickPOW26(LL k)
{
uLL ts=26,e=1;
while(k)
{
if(k&1) e=e*ts;
ts=ts*ts;
k>>=1LL;
}
return e;
}
uLL getSUM26(LL L)
{
if(L==1LL)
{
return 26LL;
}
LL half=L/2;
if(L%2==0)
{
return getSUM26(half)*(1LL+QuickPOW26(half));
}
else
{
return getSUM26(half)*(1LL+QuickPOW26(half))+QuickPOW26(L);
}
}
MARTRIX QuickPOWmatrix(MARTRIX mt,LL k)
{
MARTRIX e(mt.n);
e.getONE();
while(k)
{
if(k&1) e=e*mt;
mt=mt*mt;
k>>=1LL;
}
return e;
}
MARTRIX getSUMmartrix(MARTRIX mt,LL k)
{
if(k==1LL) return mt;
LL half=k/2;
MARTRIX halfmat=getSUMmartrix(mt,half);
MARTRIX halfpow=QuickPOWmatrix(mt,half);
if(k&1)
{
return halfmat+halfmat*halfpow+QuickPOWmatrix(mt,k);
}
else
{
return halfmat+halfmat*halfpow;
}
}
int main()
{
while(scanf("%d%I64u",&N,&L)!=EOF)
{
ac_init();
for(int i=0;i<N;i++)
{
scanf("%s",str);
ac_insert(str);
}
ac_build();
MARTRIX mt(sz);
for(int i=0;i<sz;i++)
{
if(end[i]) continue;
for(int j=0;j<26;j++)
{
int p=ch[i][j];
if(end[p]||end[fail[p]]) continue;
mt.martrix[i][p]++;
}
}
uLL all=getSUM26(L);
MARTRIX RS=getSUMmartrix(mt,L);
uLL jian=0;
for(int i=0;i<sz;i++)
{
jian+=RS.martrix[0][i];
}
printf("%I64u\n",all-jian);
}
return 0;
}