Codeforces 500E. New Year Domino 倍增/线段树+离线

107 篇文章 0 订阅
64 篇文章 1 订阅



E. New Year Domino
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Celebrating the new year, many people post videos of falling dominoes; Here's a list of them:https://www.youtube.com/results?search_query=New+Years+Dominos

User ainta, who lives in a 2D world, is going to post a video as well.

There are n dominoes on a 2D Cartesian plane. i-th domino (1 ≤ i ≤ n) can be represented as a line segment which is parallel to the y-axis and whose length is li. The lower point of the domino is on the x-axis. Let's denote the x-coordinate of the i-th domino as pi. Dominoes are placed one after another, so p1 < p2 < ... < pn - 1 < pn holds.

User ainta wants to take a video of falling dominoes. To make dominoes fall, he can push a single domino to the right. Then, the domino will fall down drawing a circle-shaped orbit until the line segment totally overlaps with the x-axis.

Also, if the s-th domino touches the t-th domino while falling down, the t-th domino will also fall down towards the right, following the same procedure above. Domino s touches domino t if and only if the segment representing s and t intersects.

See the picture above. If he pushes the leftmost domino to the right, it falls down, touching dominoes (A), (B) and (C). As a result, dominoes (A), (B), (C) will also fall towards the right. However, domino (D) won't be affected by pushing the leftmost domino, but eventually it will fall because it is touched by domino (C) for the first time.

The picture above is an example of falling dominoes. Each red circle denotes a touch of two dominoes.

User ainta has q plans of posting the video. j-th of them starts with pushing the xj-th domino, and lasts until the yj-th domino falls. But sometimes, it could be impossible to achieve such plan, so he has to lengthen some dominoes. It costs one dollar to increase the length of a single domino by 1. User ainta wants to know, for each plan, the minimum cost needed to achieve it. Plans are processed independently, i. e. if domino's length is increased in some plan, it doesn't affect its length in other plans. Set of dominos that will fall except xj-th domino and yj-th domino doesn't matter, but the initial push should be on domino xj.

Input

The first line contains an integer n (2 ≤ n ≤ 2 × 105)— the number of dominoes.

Next n lines describe the dominoes. The i-th line (1 ≤ i ≤ n) contains two space-separated integers pili (1 ≤ pi, li ≤ 109)— the x-coordinate and the length of the i-th domino. It is guaranteed that p1 < p2 < ... < pn - 1 < pn.

The next line contains an integer q (1 ≤ q ≤ 2 × 105) — the number of plans.

Next q lines describe the plans. The j-th line (1 ≤ j ≤ q) contains two space-separated integers xjyj (1 ≤ xj < yj ≤ n). It means the j-th plan is, to push the xj-th domino, and shoot a video until the yj-th domino falls.

Output

For each plan, print a line containing the minimum cost needed to achieve it. If no cost is needed, print 0.

Sample test(s)
input
6
1 5
3 3
4 4
9 2
10 1
12 1
4
1 2
2 4
2 5
2 6
output
0
1
1
2
Note

Consider the example. The dominoes are set like the picture below.

Let's take a look at the 4th plan. To make the 6th domino fall by pushing the 2nd domino, the length of the 3rd domino (whose x-coordinate is 4) should be increased by 1, and the 5th domino (whose x-coordinate is 9) should be increased by 1 (other option is to increase 4th domino instead of 5th also by 1). Then, the dominoes will fall like in the picture below. Each cross denotes a touch between two dominoes.


方法1:   就是求某一段区间没有被覆盖的长度是多少,可以离线询问用线段树解决

/* ***********************************************
Author        :CKboss
Created Time  :2015年03月23日 星期一 12时38分27秒
File Name     :CF500_2.cpp
************************************************ */

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>

using namespace std;

const int maxn=400100;

int n,q;

struct Gun 
{
	int h,l,r;
}gn[maxn];

struct QUE
{
	int l,r,ans,id; 
}que[maxn];

bool cmp1(QUE A,QUE B)
{
	if(A.l!=B.l) return A.l>B.l;
	return A.r>B.r;
}

bool cmp2(QUE A,QUE B)
{
	return A.id<B.id;
}

/***** lisan ********/

int arr[maxn],an;

/************** seg tree *******************/

#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

int tree[maxn<<2];
bool cover[maxn<<2];

void push_up(int rt)
{
	tree[rt]=tree[rt<<1]+tree[rt<<1|1];
}

void push_down(int l,int r,int rt)
{
	if(cover[rt]==true)
	{
		cover[rt<<1]=cover[rt<<1|1]=true;
		int m=(l+r)/2;
		tree[rt<<1]=arr[m+1]-arr[l]; tree[rt<<1|1]=arr[r+1]-arr[m+1];
		cover[rt]=false;
	}
}

void insert(int L,int R,int l,int r,int rt)
{
	if(L<=l&&r<=R)
	{
		tree[rt]=arr[r+1]-arr[l];
		cover[rt]=true;
		return ;
	}

	push_down(l,r,rt);

	int m=(l+r)/2;

	if(L<=m) insert(L,R,lson);
	if(R>m) insert(L,R,rson);

	push_up(rt);
}

int query(int L,int R,int l,int r,int rt)
{
	if(L<=l&&r<=R)
	{
		return tree[rt];
	}

	push_down(l,r,rt);

	int m=(l+r)/2;

	int ret=0;
	if(L<=m) ret+=query(L,R,lson);
	if(R>m) ret+=query(L,R,rson);

	return ret;
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);

	scanf("%d",&n);

	an++;
	for(int i=0;i<n;i++)
	{
		int a,b;
		scanf("%d%d",&a,&b);
		gn[i].l=a; gn[i].h=b; gn[i].r=a+b;
		arr[an++]=a; arr[an++]=a+b;
	}

	/// lisan
	sort(arr+1,arr+an);
	an=unique(arr+1,arr+an)-arr;

	scanf("%d",&q);
	for(int i=0;i<q;i++)
	{
		int a,b;
		scanf("%d%d",&a,&b);
		que[i].l=a; que[i].r=b; que[i].id=i;
	}

	sort(que,que+q,cmp1);

	int nx=n-1;

	for(int i=0;i<q;i++)
	{
		while(nx>=que[i].l-1)
		{
			/// add nx 加入第nx颗柱子
			int L=lower_bound(arr+1,arr+an,gn[nx].l)-arr;
			int R=lower_bound(arr+1,arr+an,gn[nx].r)-arr-1;
			insert(L,R,1,an-2,1);
			nx--;
		}

		int a = que[i].l-1 , b = que[i].r-1;
		int L=lower_bound(arr+1,arr+an,gn[a].l)-arr;
		int R=lower_bound(arr+1,arr+an,gn[b].l)-arr-1;

		que[i].ans=gn[b].l-gn[a].l-query(L,R,1,an-2,1);
	}

	sort(que,que+q,cmp2);

	for(int i=0;i<q;i++) printf("%d\n",que[i].ans);
    
    return 0;
}



方法2:  倍增法预处理到前为2^j的线段是哪一个,距离是多少


/* ***********************************************
Author        :CKboss
Created Time  :2015年03月23日 星期一 21时39分56秒
File Name     :CF500E_3.cpp
/// 倍增法
************************************************ */

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>

using namespace std;

const int maxn=200200;
const int INF=2100000000;

int n;
int a[maxn],b[maxn];
int d[maxn],dn;

int p[maxn][20];
int q[maxn][20];

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);

	scanf("%d",&n);
	for(int i=0;i<n;i++) scanf("%d%d",a+i,b+i);

	a[n]=INF; b[n]=0;
	d[dn++]=n;
	p[n][0]=n; q[n][0]=0;

	for(int i=n-1;i>=0;i--)
	{
		while(a[d[dn-1]]+b[d[dn-1]]<=a[i]+b[i]) dn--;
		p[i][0]=d[dn-1];
		if(a[i]+b[i]>=a[d[dn-1]]) q[i][0]=0;
		else q[i][0]=a[d[dn-1]]-a[i]-b[i];
		d[dn++]=i;
	}

	for(int j=1;j<20;j++)
	{
		for(int i=n;i>=0;i--)
		{
			p[i][j]=p[p[i][j-1]][j-1];
			q[i][j]=q[i][j-1]+q[p[i][j-1]][j-1];
		}
	}

	int T_T;
	scanf("%d",&T_T);
	while(T_T--)
	{
		int l,r,ans=0;
		scanf("%d%d",&l,&r);
		l--; r--;
		for(int i=19;i>=0;i--)
		{
			if(p[l][i]<=r)
			{
				ans+=q[l][i];
				l=p[l][i];
			}
		}
		printf("%d\n",ans);
	}

    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值