上下两个方程相减然后高斯消元
1013: [JSOI2008]球形空间产生器sphere
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2901 Solved: 1517
[ Submit][ Status][ Discuss]
Description
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。
Input
第一行是一个整数,n。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。
Output
有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。
Sample Input
2
0.0 0.0
-1.0 1.0
1.0 0.0
0.0 0.0
-1.0 1.0
1.0 0.0
Sample Output
0.500 1.500
HINT
数据规模:
对于40%的数据,1<=n<=3
对于100%的数据,1<=n<=10
提示:给出两个定义:
1、 球心:到球面上任意一点距离都相等的点。
2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )
Source
/* ***********************************************
Author :CKboss
Created Time :2015年05月15日 星期五 07时45分04秒
File Name :BZOJ1013.cpp
************************************************ */
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>
using namespace std;
const double eps=1e-8;
const int maxn=40;
double a[maxn][maxn],x[maxn];
int equ,val;
bool Gauss()
{
int i,j,k,col,max_r;
for(k=0,col=0;k<equ&&col<val;k++,col++)
{
max_r=k;
for(i=k+1;i<equ;i++)
if(fabs(a[i][col])>fabs(a[max_r][col]))
max_r=i;
if(fabs(a[max_r][col])<eps)
return false;
if(k!=max_r)
{
for(int j=col;j<val;j++)
swap(a[k][j],a[max_r][j]);
swap(x[k],x[max_r]);
}
x[k]/=a[k][col];
for(j=col+1;j<val;j++)
a[k][j]/=a[k][col];
a[k][col]=1;
for(i=0;i<equ;i++)
{
if(i!=k)
{
x[i]-=x[k]*a[i][k];
for(j=col+1;j<val;j++)
a[i][j]-=a[k][j]*a[i][col];
a[i][col]=0;
}
}
}
return true;
}
int n;
double cs[maxn][maxn];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
scanf("%d",&n);
for(int i=0;i<n+1;i++)
for(int j=0;j<n;j++)
scanf("%lf",&cs[i][j]);
// build matrix
equ=n; val=n;
for(int i=0;i<n;i++)
{
int ii=i+1;
double sum=0;
for(int j=0;j<n;j++)
{
a[i][j]=2*(cs[ii][j]-cs[i][j]);
sum+=(cs[ii][j]-cs[i][j])*(cs[ii][j]+cs[i][j]);
}
x[i]=sum;
}
Gauss();
for(int i=0;i<val;i++)
{
printf("%.3lf%c",x[i],(i==val-1)?'\n':' ');
}
return 0;
}