自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Don't worry,be happy

不要输给风,不要输给雨,也不要输给暴风雨

  • 博客(219)
  • 资源 (2)
  • 论坛 (2)
  • 问答 (3)

转载 三张图读懂机器学习:基本概念、五大流派与九种常见算法

本文经机器之心(微信公众号:almosthuman2014)授权转载 选自PwC作者:Alan Morrison、Anand Rao机器之心编译参与:吴攀、晏奇  机器学习正在进步,我们似乎正在不断接近我们心中的人工智能目标。语音识别、图像检测、机器翻译、风格迁移等技术已经在我们的实际生活中开始得到了应用,但机器学习的发展仍还在继续,甚至被认为有可能彻底改变人类文明

2017-12-11 10:38:31 960

原创 计算机网路的粗浅理解

计算机网络主要是解决网络中的信息交互问题,主要包括如下几点:1、 怎么传2、 怎么找3、 怎么认4、 怎么稳 理论架构包含以下五项:应用层、运输层、网络层、数据链路层、物理层 其中,各个层级的重点包括:应用层:包括http、FTP、SMTP等协议,构成应用层数据运输层:运输层的作用在于将网络层的针对主机的数据通过端口转发到应用层针对于进程的数据,主要知识

2017-09-19 07:45:20 413

原创 操作系统的粗浅理解

操作系统的功能是提供人与机器沟通的接口,而操作系统中的接口有两种存在的形式,其一是常用而重要的,以常驻进程的形式存在,可以称为活的接口,而另一种是即时使用的,以可执行文件或者类似可执行文件的形式存在,可以称为死的接口。操作系统一层一层往上走,大概都是这样的形式。

2017-06-28 21:09:12 294

转载 常见视频处理库

1.MNIST手写数字数据集下载网址:http://yann.lecun.com/exdb/mnist/index.html具体下载和处理方式请参照我的第一篇博客http://blog.csdn.net/fuwenyan/article/details/534150292.CIFAR-10,CIFAR-100下载网址:http://www.cs.toronto.edu/~kriz...

2018-10-16 14:03:34 667

转载 python调用C++

前言大家都知道Python的优点是开发效率高,使用方便,C++则是运行效率高,这两者可以相辅相成,不管是在Python项目中嵌入C++代码,或是在C++项目中用Python实现外围功能,都可能遇到Python调用C++模块的需求,下面列举出集中c++代码导出成Python接口的几种基本方法,一起来学习学习吧。原生态导出Python解释器就是用C实现,因此只要我们的C++的数据结构能让P...

2018-09-29 18:01:00 348

转载 GOP/ 码流 /码率 / 比特率 / 帧速率 / 分辨率【转】

来自:http://blog.csdn.net/xiangjai/article/details/44238005 GOP(Group of picture)        关键帧的周期,也就是两个IDR帧之间的距离,一个帧组的最大帧数,一般而言,每一秒视频至少需要使用 1 个关键帧。增加关键帧个数可改善质量,但是同时增加带宽和网络负载。         需要说明的是,通过提高...

2018-09-29 17:39:01 410

转载 FFMPEG零基础入门

转自大神雷霄骅博客:https://blog.csdn.net/leixiaohua1020/article/details/15811977在CSDN上的这一段日子,接触到了很多同行业的人,尤其是使用FFMPEG进行视音频编解码的人,有的已经是有多年经验的“大神”,有的是刚开始学习的初学者。在和大家探讨的过程中,我忽然发现了一个问题:在“大神”和初学者之间好像有一个不可逾越的鸿沟。“大神”们...

2018-09-29 10:34:09 32969 8

转载 [总结]视音频编解码技术零基础学习方法

一直想把视音频编解码技术做一个简单的总结,可是苦于时间不充裕,一直没能完成。今天有着很大的空闲,终于可以总结一个有关视音频技术的入门教程,可以方便更多的人学习从零开始学习视音频技术。需要注意的是,本文所说的视音频技术,指的是理论层面的视音频技术,并不涉及到编程相关的东西。 0.     生活中的视音频技术平时我们打开电脑中自己存电影的目录的话,一般都会如下图所示,一大堆五花八门的电影。...

2018-09-29 10:11:13 229

转载 ECCV2018论文及比赛整理

本文为极市平台原创收集,转载请附原文链接:https://blog.csdn.net/Extremevision/article/details/81875068————————————————————————————————————————————极市平台是专业视觉算法平台,主要为开发者提供真实项目需求,视觉算法开发等服务,点击填表**加入极市专业CV交流群,与6000+来自腾讯,华为,百度,...

2018-09-27 10:40:20 1985

转载 光流(optic flow)简介

光流(optic flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了。因为这种视觉现象我们每天都在经历。从本质上说,光流就是你在这个运动着的世界里感觉到的明显的视觉运动(呵呵,相对论,没有绝对的静止,也没有绝对的运动)。例如,当你坐在火车上,然后往窗外看。你可以看到树、地面、建筑等等,他们都在往后退。这个运动就是光流。而且,我们都会发现,他们的运动速度居然不一样?这就给我们...

2018-09-25 16:16:48 5651

转载 语音特征MFCC提取过程详解

转自:https://blog.csdn.net/jojozhangju/article/details/18678861原来对语音特征参数MFCC的提取过程不是很了解,最近做实验需要自己手动去提取,所以借此机会,深入的学习了一下,所以记录下来,希望能够对日后的学习有一定的帮助。一、MFCC概述 在语音识别(SpeechRecognition)和话者识别(SpeakerRecogn...

2018-09-17 15:39:15 43102 1

转载 NMS(非极大值抑制)

在物体检测中NMS(Non-maximum suppression)非极大抑制应用十分广泛,其目的是为了消除多余的框,找到最佳的物体检测的位置。在RCNN系列算法中,会从一张图片中找出很多个候选框(可能包含物体的矩形边框),然后为每个矩形框为做类别分类概率就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。非极大值抑制:先假设有6个候选框,...

2018-08-05 22:08:08 318 1

转载 关于python当中的@修饰符的浅析

要了解python中@装饰器的作用,首先要记住这么几点:1. 装饰器符号“@”属于语法糖,什么意思呢?就是说,我不按照@装饰器的语法要求来写,而是按照一般python的语法要求来写完全可以。那么用@装饰器的格式来写的目的就是为了书写简单方便2. 装饰器的作用是什么呢? 简单的理解就是:装饰原有的函数。什么意思呢?比如有一个函数func(a, b),它的功能是求a,b的差值,我现在有一个需求...

2018-07-23 16:55:02 2813 1

转载 关于python当中@修饰符的作用

今天看到Python中的一个修饰符'@',不了解它的使用,查看了下官方文档,有了一点了解。原文 PEP-318 网址:http://www.python.org/dev/peps/pep-0318/不得不佩服老外,治学很严谨,在python网站相关网页上把为什么使用decorator(主要为了简便一些代码),以及使用什么字符,甚至语法怎么设计写了个详详细细,好长的一篇啊。这是查看的其中...

2018-07-23 16:26:40 1053

原创 读取并输出tensorflow中所有变量的方法

variable_names = [v.name for v in tf.trainable_variables()]values = sess.run(variable_names)for k, v in zip(variable_names, values): print("Variable: ", k) print("Shape: ", v.shape) prin...

2018-07-13 11:21:39 5551 1

转载 imagenet标签

n01440764,丁鲷n01443537,金鱼n01484850,大白鲨n01491361,虎鲨n01494475,锤头鲨n01496331,电鳐n01498041,黄貂鱼n01514668,公鸡n01514859,母鸡n01518878,鸵鸟n01530575,燕雀n01531178,金翅雀n01532829,家朱雀n01534433,灯芯草雀n01537544,靛蓝雀,靛蓝鸟n0155899...

2018-07-11 16:43:52 3626

转载 数据集

人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计算机视觉系统,在ImageNet 1000挑战中首次超越了人类进行对象识别分类的能力。他们的系统在ImageNet 2012分类数据集中的错误率已降低至4.94%。这个数据集包含约120万张训练图像、5...

2018-07-09 17:45:07 2472

转载 可视化理解卷积神经网络

可视化理解卷积神经网络原文地址:http://blog.csdn.net/hjimce/article/details/50544370作者:hjimce一、相关理论本篇博文主要讲解2014年ECCV上的一篇经典文献:《Visualizing and Understanding Convolutional Networks》,可以说是CNN领域可视化理解的开山之作,这篇文献告诉我们CNN的每一层到...

2018-06-28 10:13:39 116

转载 准确率,召回率,F1 值、ROC,AUC、mse,mape评价指标

转载:https://blog.csdn.net/a819825294/article/details/51699211在机器学习、数据挖掘领域,工业界往往会根据实际的业务场景拟定相应的业务指标。本文旨在一起学习比较经典的三大类评价指标,其中第一、二类主要用于分类场景、第三类主要用于回归预测场景,基本思路是从概念公式,到优缺点,再到具体应用(分类问题,本文以二分类为例)。1.准确率P、召回率R、F...

2018-06-15 17:49:35 222

转载 Tensorflow slim库使用小记

转自:https://blog.csdn.net/Cyiano/article/details/75006883Tensorflow slim库使用小记slim库是tensorflow中的一个高层封装,它将原来很多tf中复杂的函数进一步封装,省去了很多重复的参数,以及平时不会考虑到的参数。可以理解为tensorflow的升级版。导入方式:import tensorflow as tfimport...

2018-06-15 09:12:35 275

转载 CNN 模型压缩与加速算法综述

导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一。 作者:姜媚前言自从AlexNet一举夺得ILSVRC 2012 ImageNet图像分类竞赛的冠军后,卷积神经网络(CNN)的热潮便席卷了整个计算机视觉领域。CNN模型火速替代了传统人工设计(hand-crafted)特征和分类器,不仅提供了一种端到端...

2018-06-14 20:36:49 209

转载 CNN压缩的各种方式与历史

本文转载自公众号《与有三学AI》为了压榨CNN模型,这几年大家都干了什么​mp.weixin.qq.com如果从2006年算,深度学习从产生到火爆已经十年了,在工业界已经产生了很多落地的应用。现在网络的深度已经可达1000层以上,下面我们关注一个问题:这些年大家是怎么“压榨”CNN模型的。首先回顾一下几个经典模型,我们主要看看深度和caffe模型大小。当然,在实际应用中,各自调试出的version...

2018-06-14 20:18:40 918

原创 Slim在CPU上跑的方法

修改train_image_classifier中的这一句tf.app.flags.DEFINE_boolean('clone_on_cpu', True, 'Use CPUs to deploy clones.')参数的False改为True即可

2018-06-14 14:33:57 750 2

转载 【查资料用】顶会网址指南

看了版上很多贴子,发现很多版友都在问“热门研究方向”、“最新方法”等。有同学建议国内某教授的教材、或者CNKI、或者某些SCI期刊。每当看到这种问题,我都有点纳闷,为什么不去读顶级会议上的论文?我无意否认以上文献的价值,但是在机器学习、计算机视觉和人工智能领域,顶级会议才是王道。国内教材和CNKI上的基本是N年前老掉牙的东西。有人会质疑这些会议都只是EI。是的,这的确非常特殊:在许多其它领域,会议...

2018-06-13 16:27:17 1655

转载 multi-class,multi-label与multi-task的区别

转自:https://blog.csdn.net/golden1314521/article/details/51251252一直很纠结Multi-class, Multi-label 以及 Multi-task 各自的区别和联系,最近找到了以下的说明资料:Multiclass classification means a classification task with more than tw...

2018-06-10 13:52:18 1782

转载 标签传播算法

标签传播算法(Label Propagation)及Python实现zouxy09@qq.comhttp://blog.csdn.net/zouxy09        众所周知,机器学习可以大体分为三大类:监督学习、非监督学习和半监督学习。监督学习可以认为是我们有非常多的labeled标注数据来train一个模型,期待这个模型能学习到数据的分布,以期对未来没有见到的样本做预测。那这个性能的源头--...

2018-06-10 13:44:17 1714

转载 Tensorflow中的dynamic shape、static shape及reshape、set_shape

转自:https://blog.csdn.net/qq_21949357/article/details/77987928这个问题是在学习Tensorflow当中,reshape与set_shape的区别时引出的。在学习Tensorflow的cifar10代码的时候,发现在处理cifar数据集的读入数据时,demo使用的是如下代码来处理读入数据而不是直接使用熟悉的reshape。float_ima...

2018-06-06 14:20:11 588

转载 目标检测---RCNN系列

•   RCNN        RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化。        算法可以分为四步:        1)候选区域选择        Region Proposal是一类传统的区域提取方...

2018-04-18 10:58:02 304

转载 Softmax的理解与应用

Softmax在机器学习中有非常广泛的应用,但是刚刚接触机器学习的人可能对Softmax的特点以及好处并不理解,其实你了解了以后就会发现,Softmax计算简单,效果显著,非常好用。我们先来直观看一下,Softmax究竟是什么意思我们知道max,假如说我有两个数,a和b,并且a>b,如果取max,那么就直接取a,没有第二种可能但有的时候我不想这样,因为这样会造成分值小的那个饥饿。所以我希望分...

2018-04-11 21:19:59 443

转载 CNN卷积神经网络推导和实现

Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现zouxy09@qq.comhttp://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察。更好...

2018-03-30 10:36:05 1216

转载 optimizer优化算法总结

优化方法总结参考优化方法总结参考深度学习最全优化方法总结比较An overview of gradient descent optimization algorithms目录优化方法总结SGD1 Batch gradient descent2 Stochastic gradient descent3 Mini-batch gradient descent三种gradient descent对比Mi...

2018-03-28 16:54:15 2949 1

原创 极大似然估计思想的最简单解释

极大似然估计法的理解可以从三个角度入手,一个是整体性的思想,然后两个分别是离散状态的极大似然估计和连续状态的极大似然估计的简单例子。一、思想极大似然估计可以拆成三个词,分别是“极大”、“似然”、“估计”,分别的意思如下:极大:最大的概率似然:看起来是这个样子的估计:就是这个样子的连起来就是,最大的概率看起来是这个样子的那就是这个样子的。举个例子:有两个妈妈带着一个小孩到了你的面前,妈妈A和小孩长得...

2018-03-28 11:10:12 24993 12

转载 信息熵公式的由来

作者:忆臻链接:https://www.zhihu.com/question/22178202/answer/161732605来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 首先我们要区分信息量和信息熵的区别。下面根据我的理解一步一步引出信息熵及其公式的来源:信息熵的公式先抛出信息熵公式如下:其中 代表随机事件X为 的概率,下面来逐步介绍信息熵的公式来源!信息量信...

2018-03-22 11:07:56 5533 1

转载 tensorflow-梯度下降,有这一篇就够了(深度好文)

前言最近机器学习越来越火了,前段时间斯丹福大学副教授吴恩达都亲自录制了关于Deep Learning Specialization的教程,在国内掀起了巨大的学习热潮。本着不被时代抛弃的念头,自己也开始研究有关机器学习的知识。都说机器学习的学习难度非常大,但不亲自尝试一下又怎么会知道其中的奥妙与乐趣呢?只有不断的尝试才能找到最适合自己的道路。请容忍我上述的自我煽情,下面进入主题。这篇文章主要对机器学...

2018-03-06 10:21:46 498

原创 tensorflow转换one-hot向量

def one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None): """Returns a one-hot tensor. The locations represented by indices in `indices` take value...

2018-03-05 17:22:33 2124

转载 tensorflow常用函数

1、tensorflow的基本运作为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始:import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.placeholder("float") b = tf.placeholder("float") y = tf.mul(a, b) #构造一个op节点 sess = tf.Session()...

2018-03-02 10:49:16 1344

转载 详解LSTM

今天的内容有:LSTM 思路LSTM 的前向计算LSTM 的反向传播关于调参LSTM长短时记忆网络(Long Short Term Memory Network, LSTM),是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题,目前比较流行。长短时记忆网络的思路:原始 RNN 的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。再增加一个状态,即c,让它来保存长期的状态,称为...

2018-02-11 15:39:30 1423

转载 理解矩阵

转自:http://www.cnblogs.com/sumuncle/p/6373467.html#3703221前言:读完本篇文章,自觉醍醐灌顶,矩阵的存在,完美的解释了自然空间中的多维空间的存在以及运动形式,自然的哲学中处处充满着数学的原理,感谢原博主分享,受益良多。线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线...

2018-02-08 14:12:19 145

转载 机器学习常用数学符号及读法大全

转自:http://blog.csdn.net/u012965373/article/details/52936875数学符号及读法大全常用数学输入符号: ≈ ≡≠= ≤≥ < > ≮ ≯ ∷ ±+ - × ÷ / ∫∮ ∝ ∞ ∧ ∨ ∑∏∪ ∩ ∈ ∵ ∴  ⊥ ‖ ∠ ⌒  ≌ ∽ √  () 【】{} Ⅰ Ⅱ ⊕ ⊙∥α β γ δ ε 

2018-02-07 11:19:58 3510

转载 GRU神经网络

转自:http://blog.csdn.net/wangyangzhizhou/article/details/77332582前面已经详细讲了LSTM神经网络(文末有链接回去),接着往下讲讲LSTM的一个很流行的变体。GRU是什么GRU即Gated Recurrent Unit。前面说到为了克服RNN无法很好处理远距离依赖而提出了LSTM,而GRU则是LSTM的一个变体,

2018-02-07 11:16:07 1385

maven-archetype-quickstart-1.1.jar下载

解决Unable to create project from archetype [org.apache.maven.archetypes:maven-archetype-quickstart:1.1] 1. 下载maven-archetype-quickstart-1.1.jar 文件地址: 2.cmd窗口执行mvn install:install-file -DgroupId=org.apache.maven.archetypes -DartifactId=maven-archetype-quickstart -Dversion=1.1 -Dpackaging=jar -Dfile=maven-archetype-quickstart-1.1.jar

2018-01-10

libiconv-1.9.2-1-src.rar

windows下iconv的安装包,安装后可通过cywin进行编译

2017-12-19

class_brick的留言板

发表于 2020-01-02 最后回复 2020-01-02

java读取zip压缩文件里面二级文件夹目录内的文件

发表于 2016-02-22 最后回复 2017-08-16

提示
确定要删除当前文章?
取消 删除