class_brick
码龄10年
关注
提问 私信
  • 博客:876,257
    社区:555
    问答:8,775
    885,587
    总访问量
  • 76
    原创
  • 490,573
    排名
  • 221
    粉丝
  • 0
    铁粉

个人简介:以我所经,引以为幸

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2015-01-28
博客简介:

Don't worry,be happy

博客描述:
不要输给风,不要输给雨,也不要输给暴风雨
查看详细资料
个人成就
  • 获得408次点赞
  • 内容获得109次评论
  • 获得1,018次收藏
创作历程
  • 76篇
    2018年
  • 124篇
    2017年
  • 2篇
    2016年
  • 17篇
    2015年
成就勋章
TA的专栏
  • 一块砖的android源码之旅
    11篇
  • 机器学习实战
    1篇
  • tensorflow项目实战
    1篇
  • 一块砖的android源码之路
    13篇
  • 一块砖的android源码之路的借鉴
    17篇
  • 项目管理
    3篇
  • android studio
    8篇
  • ACM
    1篇
  • 啦啦啦
    7篇
  • 面试
  • 小题目
    2篇
  • c++
    2篇
  • mfc
    1篇
  • 算法
    10篇
  • 数学
    5篇
  • 机器学习
    64篇
  • 高质量程序设计指南C++/c语言
    4篇
  • 设计模式
    4篇
  • 老罗的android之旅学习笔记
    5篇
  • 杂记
    9篇
  • android
    7篇
  • android逆向
    4篇
  • XPOSED
    1篇
  • python
    8篇
  • 个人项目---步步为营
    2篇
  • nginx
    1篇
  • 网络
    2篇
  • 操作系统
    1篇
  • java
    12篇
  • ElasticSearch
    6篇
  • 正则表达式
    1篇
  • 微信小程序
    1篇
  • 错误记录
    7篇
  • maven
    2篇
  • linux
    2篇
  • p
  • 视频
    3篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

常见视频处理库

1.MNIST手写数字数据集下载网址:http://yann.lecun.com/exdb/mnist/index.html具体下载和处理方式请参照我的第一篇博客http://blog.csdn.net/fuwenyan/article/details/534150292.CIFAR-10,CIFAR-100下载网址:http://www.cs.toronto.edu/~kriz...
转载
发布博客 2018.10.16 ·
2199 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

python调用C++

前言大家都知道Python的优点是开发效率高,使用方便,C++则是运行效率高,这两者可以相辅相成,不管是在Python项目中嵌入C++代码,或是在C++项目中用Python实现外围功能,都可能遇到Python调用C++模块的需求,下面列举出集中c++代码导出成Python接口的几种基本方法,一起来学习学习吧。原生态导出Python解释器就是用C实现,因此只要我们的C++的数据结构能让P...
转载
发布博客 2018.09.29 ·
758 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GOP/ 码流 /码率 / 比特率 / 帧速率 / 分辨率【转】

来自:http://blog.csdn.net/xiangjai/article/details/44238005 GOP(Group of picture)        关键帧的周期,也就是两个IDR帧之间的距离,一个帧组的最大帧数,一般而言,每一秒视频至少需要使用 1 个关键帧。增加关键帧个数可改善质量,但是同时增加带宽和网络负载。         需要说明的是,通过提高...
转载
发布博客 2018.09.29 ·
924 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

FFMPEG零基础入门

转自大神雷霄骅博客:https://blog.csdn.net/leixiaohua1020/article/details/15811977在CSDN上的这一段日子,接触到了很多同行业的人,尤其是使用FFMPEG进行视音频编解码的人,有的已经是有多年经验的“大神”,有的是刚开始学习的初学者。在和大家探讨的过程中,我忽然发现了一个问题:在“大神”和初学者之间好像有一个不可逾越的鸿沟。“大神”们...
转载
发布博客 2018.09.29 ·
39057 阅读 ·
28 点赞 ·
8 评论 ·
195 收藏

[总结]视音频编解码技术零基础学习方法

一直想把视音频编解码技术做一个简单的总结,可是苦于时间不充裕,一直没能完成。今天有着很大的空闲,终于可以总结一个有关视音频技术的入门教程,可以方便更多的人学习从零开始学习视音频技术。需要注意的是,本文所说的视音频技术,指的是理论层面的视音频技术,并不涉及到编程相关的东西。 0.     生活中的视音频技术平时我们打开电脑中自己存电影的目录的话,一般都会如下图所示,一大堆五花八门的电影。...
转载
发布博客 2018.09.29 ·
404 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ECCV2018论文及比赛整理

本文为极市平台原创收集,转载请附原文链接:https://blog.csdn.net/Extremevision/article/details/81875068————————————————————————————————————————————极市平台是专业视觉算法平台,主要为开发者提供真实项目需求,视觉算法开发等服务,点击填表**加入极市专业CV交流群,与6000+来自腾讯,华为,百度,...
转载
发布博客 2018.09.27 ·
2710 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

光流(optic flow)简介

光流(optic flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了。因为这种视觉现象我们每天都在经历。从本质上说,光流就是你在这个运动着的世界里感觉到的明显的视觉运动(呵呵,相对论,没有绝对的静止,也没有绝对的运动)。例如,当你坐在火车上,然后往窗外看。你可以看到树、地面、建筑等等,他们都在往后退。这个运动就是光流。而且,我们都会发现,他们的运动速度居然不一样?这就给我们...
转载
发布博客 2018.09.25 ·
13807 阅读 ·
17 点赞 ·
0 评论 ·
61 收藏

语音特征MFCC提取过程详解

转自:https://blog.csdn.net/jojozhangju/article/details/18678861原来对语音特征参数MFCC的提取过程不是很了解,最近做实验需要自己手动去提取,所以借此机会,深入的学习了一下,所以记录下来,希望能够对日后的学习有一定的帮助。一、MFCC概述 在语音识别(SpeechRecognition)和话者识别(SpeakerRecogn...
转载
发布博客 2018.09.17 ·
62865 阅读 ·
25 点赞 ·
2 评论 ·
235 收藏

NMS(非极大值抑制)

在物体检测中NMS(Non-maximum suppression)非极大抑制应用十分广泛,其目的是为了消除多余的框,找到最佳的物体检测的位置。在RCNN系列算法中,会从一张图片中找出很多个候选框(可能包含物体的矩形边框),然后为每个矩形框为做类别分类概率就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。非极大值抑制:先假设有6个候选框,...
转载
发布博客 2018.08.05 ·
509 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

关于python当中的@修饰符的浅析

要了解python中@装饰器的作用,首先要记住这么几点:1. 装饰器符号“@”属于语法糖,什么意思呢?就是说,我不按照@装饰器的语法要求来写,而是按照一般python的语法要求来写完全可以。那么用@装饰器的格式来写的目的就是为了书写简单方便2. 装饰器的作用是什么呢? 简单的理解就是:装饰原有的函数。什么意思呢?比如有一个函数func(a, b),它的功能是求a,b的差值,我现在有一个需求...
转载
发布博客 2018.07.23 ·
3118 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

关于python当中@修饰符的作用

今天看到Python中的一个修饰符'@',不了解它的使用,查看了下官方文档,有了一点了解。原文 PEP-318 网址:http://www.python.org/dev/peps/pep-0318/不得不佩服老外,治学很严谨,在python网站相关网页上把为什么使用decorator(主要为了简便一些代码),以及使用什么字符,甚至语法怎么设计写了个详详细细,好长的一篇啊。这是查看的其中...
转载
发布博客 2018.07.23 ·
1254 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

读取并输出tensorflow中所有变量的方法

variable_names = [v.name for v in tf.trainable_variables()]values = sess.run(variable_names)for k, v in zip(variable_names, values): print("Variable: ", k) print("Shape: ", v.shape) prin...
原创
发布博客 2018.07.13 ·
6836 阅读 ·
4 点赞 ·
1 评论 ·
2 收藏

imagenet标签

n01440764,丁鲷n01443537,金鱼n01484850,大白鲨n01491361,虎鲨n01494475,锤头鲨n01496331,电鳐n01498041,黄貂鱼n01514668,公鸡n01514859,母鸡n01518878,鸵鸟n01530575,燕雀n01531178,金翅雀n01532829,家朱雀n01534433,灯芯草雀n01537544,靛蓝雀,靛蓝鸟n0155899...
转载
发布博客 2018.07.11 ·
5003 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

数据集

人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计算机视觉系统,在ImageNet 1000挑战中首次超越了人类进行对象识别分类的能力。他们的系统在ImageNet 2012分类数据集中的错误率已降低至4.94%。这个数据集包含约120万张训练图像、5...
转载
发布博客 2018.07.09 ·
5437 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

可视化理解卷积神经网络

可视化理解卷积神经网络原文地址:http://blog.csdn.net/hjimce/article/details/50544370作者:hjimce一、相关理论本篇博文主要讲解2014年ECCV上的一篇经典文献:《Visualizing and Understanding Convolutional Networks》,可以说是CNN领域可视化理解的开山之作,这篇文献告诉我们CNN的每一层到...
转载
发布博客 2018.06.28 ·
265 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

准确率,召回率,F1 值、ROC,AUC、mse,mape评价指标

转载:https://blog.csdn.net/a819825294/article/details/51699211在机器学习、数据挖掘领域,工业界往往会根据实际的业务场景拟定相应的业务指标。本文旨在一起学习比较经典的三大类评价指标,其中第一、二类主要用于分类场景、第三类主要用于回归预测场景,基本思路是从概念公式,到优缺点,再到具体应用(分类问题,本文以二分类为例)。1.准确率P、召回率R、F...
转载
发布博客 2018.06.15 ·
513 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Tensorflow slim库使用小记

转自:https://blog.csdn.net/Cyiano/article/details/75006883Tensorflow slim库使用小记slim库是tensorflow中的一个高层封装,它将原来很多tf中复杂的函数进一步封装,省去了很多重复的参数,以及平时不会考虑到的参数。可以理解为tensorflow的升级版。导入方式:import tensorflow as tfimport...
转载
发布博客 2018.06.15 ·
430 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

CNN 模型压缩与加速算法综述

导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一。 作者:姜媚前言自从AlexNet一举夺得ILSVRC 2012 ImageNet图像分类竞赛的冠军后,卷积神经网络(CNN)的热潮便席卷了整个计算机视觉领域。CNN模型火速替代了传统人工设计(hand-crafted)特征和分类器,不仅提供了一种端到端...
转载
发布博客 2018.06.14 ·
419 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

CNN压缩的各种方式与历史

本文转载自公众号《与有三学AI》为了压榨CNN模型,这几年大家都干了什么​mp.weixin.qq.com如果从2006年算,深度学习从产生到火爆已经十年了,在工业界已经产生了很多落地的应用。现在网络的深度已经可达1000层以上,下面我们关注一个问题:这些年大家是怎么“压榨”CNN模型的。首先回顾一下几个经典模型,我们主要看看深度和caffe模型大小。当然,在实际应用中,各自调试出的version...
转载
发布博客 2018.06.14 ·
1499 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Slim在CPU上跑的方法

修改train_image_classifier中的这一句tf.app.flags.DEFINE_boolean('clone_on_cpu', True, 'Use CPUs to deploy clones.')参数的False改为True即可
原创
发布博客 2018.06.14 ·
976 阅读 ·
2 点赞 ·
2 评论 ·
1 收藏
加载更多