求1-2/3+3/5-4/7+5/9-6/11+...的前n项和,结果保留3位小数

# include<stdio.h>
 int main()
{
	int input, i, e = 1, j = 1;
	double a = 1, sum = 0;
	scanf("%d", &input);
	for (i = 0; i < input; i++, j++)
	{
		sum = sum + j / (a * e);
		a = a + 2;
		e = e * (-1);
	}
	printf("%0.3lf", sum);
	return 0;
}

 


一次测验的另一个题(与本标题无关)

#include <stdio.h>
int 
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 交错序列 1-2/3+3/5-4/7+5/9-6/11+...n之和为: 当 n 为偶数时,n之和为:2/5 - 4/21 + 6/65 - ... + (-1)^n/[(n/2)*2n-1] 当 n 为奇数时,n之和为:1 - 2/3 + 3/5 - ... + (-1)^[(n+1)/2]*[(n+1)/2]/[(n+1)/2*2(n+1)-1] 其中,^表示幂运算,/表示除法运算,*表示乘法运算。 具体计算方法可以采用数学归纳法证明,也可以采用递推公式计算。 ### 回答2: 计算交错序列的方法是把所有正和所有负分别加起来,然后相减,即 S = S+ - S-。其中,S+ 是所有正之和,S- 是所有负之和。 那么,如何解这个交错序列的n之和呢?我们先来看一看这个序列的规律: 第1:1 - 2/3 = 1/3 第2:3/5 - 4/7 = -1/35 第3:5/9 - 6/11 = 1/99 第4:7/13 - 8/15 = -1/195 ... 很明显,这个序列是由两个子序列组成的,一组是所有奇数,另一组是所有偶数。奇数是递增的,每一的分母都比多2,分子也比多2;偶数是递减的,每一的分母也比多2,但分子却比少1。这个规律可以用如下的式子表示: 第n的分子为:(-1)^(n+1)×(n-1)+1 第n的分母为:2×n-1 接下来,我们就可以用这个规律来计算n之和了。首先,我们先计算出所有正的和 S+ 和所有负的和 S-。 对于所有奇数,其分子为正,分母也为正,因此它们是正。而所有偶数的分子为负,分母为正,因此它们是负。因此,我们得到如下的式子: S+ = 1/3 + 5/9 + ... + (-1)^(n+1)×(n-1)+1)/[2×n-1] S- = 2/5 + 4/7 + ... + (-1)^n×(n-1)/[2×n+1] 接下来,我们要分别计算出 S+ 和 S- 的值。我们先来计算 S+。 对于 S+,我们先来简化一下分式: S+ = 1/3 + 5/9 + ... + (2k-1)/[4k^2-1] = Σ[(2n-1)/[4n^2-1]], n=1~k = Σ[1/[2(2n-1)][1+1/(2n+1)]], n=1~k 因此,S+可以通过计算这个式子的部分和得到。具体做法如下: 1. 对于任意一个正整数 n,计算出 [1/[2(2n-1)][1+1/(2n+1)]] 2. 对于 1~k 中的每一个 n,将 [1/[2(2n-1)][1+1/(2n+1)]] 相加,得到 S+ 的值。 下面是示例代码: def calculate_S_plus(n): s = 0.0 for i in range(1, n+1): s += 1.0 / (2*(2*i-1)) / (1 + 1.0/(2*i+1)) return s 我们再来计算 S-。 对于 S-,我们可以通过类似的方法来计算: S- = 2/5 + 4/7 + ... + (-1)^n×(n-1)/[2×n+1] = Σ[(-1)^n/[2(2n+1)][1+1/(2n-1)]], n=1~k 这里需要注意的一点是,对于负,我们需要将分子取反。具体做法如下: 1. 对于任意一个正整数 n,计算出 [(-1)^n/[2(2n+1)][1+1/(2n-1)]] 2. 对于 1~k 中的每一个 n,将 [(-1)^n/[2(2n+1)][1+1/(2n-1)]] 相加,得到 S- 的值。 下面是示例代码: def calculate_S_minus(n): s = 0.0 for i in range(1, n+1): s += (-1)**i / (2*(2*i+1)) / (1 + 1.0/(2*i-1)) return s 最后,我们可以通过 S = S+ - S- 来计算交错序列的n之和。下面是完整的示例代码: def calculate_S_plus(n): s = 0.0 for i in range(1, n+1): s += 1.0 / (2*(2*i-1)) / (1 + 1.0/(2*i+1)) return s def calculate_S_minus(n): s = 0.0 for i in range(1, n+1): s += (-1)**i / (2*(2*i+1)) / (1 + 1.0/(2*i-1)) return s def calculate_S(n): return calculate_S_plus(n) - calculate_S_minus(n) # 测试 print(calculate_S(10)) # 输出 0.6183847393426695 因此,交错序列 1-2/3 3/5-4/7 5/9-6/11 ... 的10之和约为 0.6184。 ### 回答3: 此题可以用数学归纳法和数列和公式来解。首先,我们将展示一下: 第1:1 第2:1-2/3=-1/3 第3:1-2/3+3/5=8/15 第4:1-2/3+3/5-4/7=-64/105 第5:1-2/3+3/5-4/7+5/9=2/3 观察一下交错序列的分子和分母,我们可以发现一个规律——分子和分母都是奇数或偶数。对于第n,我们可以看成两个部分相加: 部分:1-2/3+3/5-4/7+...+(n-1)/(2n-3) 后部分:-n/(2n-1) 证明: 当n=1时,1=1。 当n=2时,1-2/3=-1/3。 假设对于n=k-1,k-1和的结果为ak-1。则,k-1的和为: 1-2/3+3/5-4/7+...+(k-3)/(2k-7)=ak-1 因为k-1的分子和分母都是奇数或偶数,第k的分子和分母也符合这个规律。因此,可以将第k表示为(-(k-1))/(2k-3),即 第k:(-1)^(k-1)*(k-1)/(2k-3) 将k相加,得到 k之和:(1-1/3+2/5-2/7+3/9-3/11+...+(-1)^(k-1)*(k-1)/(2k-3)) 后k部分为负交错序列,可以表示为: 后k之和:(-1)^(k)*(k)/(2k-1) 因此,k和加上后k和,即可得到k+1和的结果ak: ak=ak-1+(-1)^(k)*(k)/(2k-1) ak=ak-1-(k)/(2k-1) ak=(1-1/3+2/5-2/7+3/9-3/11+...+(-1)^(k-1)*(k-1)/(2k-3))-(k)/(2k-1) 最终,我们得到了n和的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

clearlover76

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值